Derivatives Lesson  Oct 15
Upcoming SlideShare
Loading in...5
×
 

Derivatives Lesson Oct 15

on

  • 449 views

 

Statistics

Views

Total Views
449
Views on SlideShare
448
Embed Views
1

Actions

Likes
0
Downloads
3
Comments
0

1 Embed 1

http://www.slideshare.net 1

Accessibility

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

Derivatives Lesson  Oct 15 Derivatives Lesson Oct 15 Presentation Transcript

  • LIMITS
  • We say that the limit of f(x), as x approaches a written lim f (x) = L x      a if we can take outputs f(x) as close to L as we wish by taking  inputs x sufficiently close to a but not equal to a.
  • x2 ­ 9 Graph the function f(x) =  x ­ 3
  • Now lets estimate  lim f(x)  x      3 On graphing calculator press 2nd [Tblset]
  • Then press 2nd [TABLE]
  • Graph f(x) =  sinx x
  • estimate  lim f(x) x      0
  • Graph f(x) =  x x
  • x lim x lim = ­1 x      0+ x = 1 x      0­ x Right ­ hand limit:  lim f(x) = L means that f(x) can be  x      a + made as close to L as we wish by taking x sufficiently close  to a but greater than a Left ­ hand limit: lim f(x) = L means that f(x) can be  x      a­ made as close to L as we wish by taking x sufficiently close  to a but less than a
  • lim sinx = lim sinx + = lim sinx = 1 x      0 x x      0 x ­ x      0 x lim x lim = x      0 x lim x therefore,  x      0 does not exist x      0+ x ­ x x
  • Rules for calculation limits 1. Sum Rule:  lim [ f(x) + g(x) ] = lim f(x) + lim g(x) = L + M x      a x      a x      a 2. Difference Rule: lim [ f(x) ­ g(x) ] = lim f(x) ­ lim g(x) x      a x      a x      a = L ­ M x      a . . 3. Product Rule: lim [ f(x)  g(x) ] = lim f(x) lim g(x) = LM x      a x      a
  • 4. Constant Multiple Rule: lim k f(x) = kL x      a f(x) lim f(x) lim x      a L = if M      0 5. Quotient Rule: x      a = = g(x) lim g(x) M x      a
  • Find lim x2 x      2 3x + 4 lim x2 lim x2 x      2 = x      2 3x + 4 lim (3x + 4) x      2 lim x lim x = x      2 x      2 3 lim x + lim 4 x      2 x      2 2 5
  • 2 Find  lim x  ­ 5x + 6 x      2 x ­ 2
  • Questions 1 ­ 19 odd only Exercise 2.7