Richard Thackway, VAST Transformations: Tracking sand dune transformation before, during and after sand dune mining, Myall Lakes, NSW
Upcoming SlideShare
Loading in...5
×
 

Like this? Share it with your network

Share

Richard Thackway, VAST Transformations: Tracking sand dune transformation before, during and after sand dune mining, Myall Lakes, NSW

on

  • 444 views

Richard Thackway, Manager, VAST Transformations and Adjunct Associate Professor, School of Geography, Planning & Environmental Management, The University of Queensland Brisbane Qld delivered the ...

Richard Thackway, Manager, VAST Transformations and Adjunct Associate Professor, School of Geography, Planning & Environmental Management, The University of Queensland Brisbane Qld delivered the presentation at the 2014 Mineral Sands conference.
The Annual Australian Journal Mining's Mineral Sands Conference is the key meeting place for Australia's Mineral Sands industry.
The event gives delegates the chance to hear from industry experts as they share their perspectives on the hot topics for the mineral sands industry. For more information about the event, please visit the website: http://www.informa.com.au/mineralsandsconference

Statistics

Views

Total Views
444
Views on SlideShare
443
Embed Views
1

Actions

Likes
0
Downloads
25
Comments
0

1 Embed 1

https://twitter.com 1

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

Richard Thackway, VAST Transformations: Tracking sand dune transformation before, during and after sand dune mining, Myall Lakes, NSW Presentation Transcript

  • 1. Tracking  sand  dune  transforma2on     before,  during  and  a5er  sand  dune  mining,     Myall  Lakes,  NSW,  a  case  study   Richard  Thackway   The  14th  Annual  Australian  Journal  Mining's  Mineral  Sands  Conference   Rydges,  Melbourne,    4th  &  5th  March  2014      
  • 2. Outline   •  •  •  •  •  •  VAST-­‐2  system     Case  study  -­‐  Bridge  Hill  Ridge,  Myall  Lakes,  NSW   Understanding  causes  and  effects  =  change  in  condiOon   Tracking  change  and  trend  before,  during  and  aPer  mining   InterpreOng  ecological  change  and  trend     Lessons  from  the  case  study   VAST  =  VegetaOon  Assets  States  and  TransiOons  
  • 3. VAST  –  An  ecological  systems  approach   •  Making  the  complex  simple  by:   –  AccounOng  for  effects  of  land  management  change  over   Ome     –  Linking  ecological  change  to  land  management  
  • 4. Assessing  ecological  change  before,   during  and  a5er  sand  dune  mining  –     using  VAST  
  • 5. Defini2ons  -­‐  Condi2on  and  transforma2on   •  Change  in  a  plant  community  (type)  due  to  effects  of  land   management  pracOces:   –  Structure   –  ComposiOon     –  RegeneraOve  capacity   Vegeta2on  condi2on   •  Resilience  =  the  capacity  of  an  plant  community  to  recover  to   a  reference  state  following  a  change/s  in  land  management   •  TransformaOon  =  changes  to  vegetaOon  condiOon  over  Ome   •  CondiOon,  resilience  and  transformaOon  are  assessed  relaOve   to  fully  natural  a  reference  state    
  • 6. VAST-­‐2  tracks  the  effects  of  land   management  prac2ces  over  2me     At  the  land  parcel  level  on-­‐ground  management  acOons  are   the  primary  cause  of  changes  in  vegetaOon  condiOon:       •  •  •  •  •  •  Modifying     Removing  and  replacing   Enhancing   Restoring   Maintaining   Improving       Biodiversity  outcomes  can  be  pracOcally  tracked  and  reported   using:   •  Criteria  or  Key  Result  Areas  and     •  Indicators  or  Key  Performance  Indicators    
  • 7. VAST-­‐2  model  of  ecosystem  change     (causes    &  effects)   change  in  vegetaOon    indicator  or  index   VAST   classes   Reference     Anthropogenic change     Relaxation   Occupation     Net benefit           1850 1875 1900 1925 1950 time 1975 2000 2025
  • 8. VAST-­‐2  focuses  on  tracking  effects  of  land   management  on  key  ecological  criteria     RegeneraOve  capacity/  funcOon     1.  Soil  hydrological  status   2.  Soil  physical  status   3.  Soil  chemical  status   4.  Soil  biological  status   5.  Fire  regime   6.  ReproducOve  potenOal   7.  Overstorey  structure   8.  Understorey  structure   9.  Overstorey  composiOon   10.  Understorey  composiOon   Soil   Vegeta2on   VegetaOon  structure    &     Species  composiOon    
  • 9. VAST  -­‐  A  framework  for  assessing  &  repor2ng   vegeta2on  condi2on       Increasing modification caused by use and management 0 I II Naturally bare Residual or unmodified III Transformed Modified IV V Replaced Adventive Replaced managed VI Replaced removed Vegetation thresholds Condition states Reference for each veg type (NVIS) Native vegetation cover Transitions = trend Non-native vegetation cover DiagnosOc  aeributes  of  VAST  states:   •  VegetaOon  structure   •  Species  composiOon   •  RegeneraOve  capacity   VAST  =  VegetaOon  Assets  States  and  TransiOons       NVIS  =  NaOonal  VegetaOon  InformaOon  System     NVIS   Thackway  &  Lesslie  (2008)  Environmental   Management,  42,  572-­‐90  
  • 10. Current  datasets  are  snapshots  but  not  2me  series     VAST  2009   Veg  condi2on  derived   by  classifying  &   mapping  effects  of  land   management  prac2ces     NaOve   /  unmodified   /  replaced   NB:  Input  dataset  biophysical  naturalness  reclassified  using   VAST  framework     Thackway & Lesslie (2008) Environmental Management, 42, 572-90
  • 11. General  process  for  tracking  change  over   2me  using  the  VAST-­‐2  system   Transforma2on  site   •  Compile  and  collate    effects  of  land   management  on  criteria    (10)  and   indicators    (22)  over  Ome.     •  Evaluate  impacts  on  the  plant   community  over  Ome   Reference  state/sites   •  Compile  and  collate    effects  of   land  management  on  criteria     (10)  and  indicators    (22)   Score  all  22  indicators  for  ‘transformaOon  site’  relaOve  to  the   ‘reference  site’.      0  =  major  change;    1  =  no  change     Derive  weighted  indices  for  the  ‘transformaOon  site’  i.e.  regeneraOve   capacity  (58%),  vegetaOon  structure  (27%)  and  species  composiOon  (18%)   by  adding  predefined  indicators   Generate  total  indices  for  ‘transformaOon  site’  for  each  year  of  the   historical  record.  Validate  using  Expert  Knowledge  
  • 12. Case  study  –  Bridge  Hill  Ridge     Geographical  and  historical   context  
  • 13. High  sand   dune  case   study       Bridge  Hill   Ridge   Sand  mining   path     Figure:  Barry  Fox  
  • 14. Transforma2on  site   Smiths Lake Case  study  site     Field  visit  January  2014   (Lat    -­‐32.404,  Long    152.496)   0   1000   2000   Kilometers     Sand  mining   path    
  • 15. Bridge  Hill  Ridge,  2011   Smiths Lake Case  study  site  -­‐  Field  visit  January  2014  
  • 16. Bridge  Hill  Ridge,  1976  &  1991   Smiths Lake 1976   1991   Source:  Geoscience  Australia,  ©  Australian  Titanium  Minerals  Industry  
  • 17. Bridge  Hill  Ridge  1975     Sandmining Dredge Smiths Lake Regenerating Mine Path Photograph:  Barry  Fox  
  • 18. Bridge  Hill  Ridge  1991     Smiths Lake Regenerated Mine Path Photograph:  Barry  Fox  
  • 19. Bridge  Hill  Ridge  2011   Smiths Lake Regenerated Mine Path
  • 20. Establishing  and  documen2ng  the   Reference  and  Transforma2on   site   Plant  community     Eucalyptus  pilularis  and   Angophora  costata       Soil  landscape  unit       Upper  slopes  and  crests   of  the  high  dune    
  • 21. Establishing  the  Reference  and   Transforma2on  site   Reference   Transforma2on   Source:  Bunning  Report  1974  
  • 22. Reference  state  plant  community     (shaded  area)   Based  on  Myerscough  and  Carolin  (1986)  
  • 23. Reference  state  plant  community     (shaded  area)   Eucalyptus  pilularis   Angophora  costata     Banksia  serrata   Source:  Coffey  and  Hollingsworth,  1973.  Map.  No.  3.1.5  
  • 24. Reference  state  plant  community   Smiths Lake Mined   area   Source:  Coffey  and  Hollingsworth,  1973.  Map.  No.  2.3.1.4  
  • 25.  Reference  site/  state   Photographs:  Richard  Thackway  
  • 26. Transforma2on  site       Sandmining  –  land  management  prac2ces    
  • 27. Sandmining  -­‐  the  process     Unmined   Reshaped     landform   Mining   direc2on                      Pond   Tailings   Mining   surface   100   0   100   200   300   250m  x  150m   Meters   Source:  Coffey  and  Hollingsworth,  1973.  Map.  No.  3.1.5  
  • 28. 1974  (0  years  old)   Timber harvested and remaining trees and vegetation removed Topsoil briefly stockpiled <10 days Photographs:  Barry  Fox  
  • 29. 1974  (0  years  old)   Original Eucalypt open forest Smiths Lake Sandmining Dredge Dredge Pond Dredge Pond Sand sprayed and dried and re-shaped as a contoured dune Photographs:  Barry  Fox  
  • 30. Transforma2on  site       Restora2on  –  land  management  prac2ces    
  • 31. 1974-­‐75  (0-­‐6  months  old)   1974 (One month old) 1975 (< 6 months old) Topsoil spread over reshaped sand dune Sorghum cover crop planted Photograph:  Barry  Fox  
  • 32. 1975  (1  year  old)   Dead and dying sorghum plants < 1% reseeding Photograph:  Barry  Fox  
  • 33. 1976-­‐77  (1.5  -­‐  2  years  old)   1975-76 (1.5 years old) 1976-77 (2 Years old) Substantial Acacia regrowth begins Isolated Acacia plants in sorghum compartment Photograph:  Barry  Fox  
  • 34. 1978  (3  years  old)   Substantial Acacia regrowth Acacia die-off beginning Photograph:  Barry  Fox  
  • 35. 1979  (4  years  old)   Substantial Acacia die-off Photograph:  Barry  Fox  
  • 36. 1981  (6  years  old)   Increasing abundance of native species growing among dead Acacia and native grasses Photograph:  Barry  Fox  
  • 37. 1991  (12  years  old)   Substantial Acacia Regrowth Substantial bare sand and open space between sapling trees with sparse leaf litter Photograph:  Barry  Fox  
  • 38. 2014  (39  years  old)     Photographs:  Richard  Thackway  
  • 39. Integra2on  using  VAST-­‐2  
  • 40. Normalising  the  age  of  regenera2on   Figure:  Barry  Fox  
  • 41. General  process  for  tracking  change  over   2me  using  the  VAST-­‐2  system   Transforma2on  site   •  Compile  and  collate    effects  of  land   management  on  criteria    (10)  and   indicators    (22)  over  Ome.     •  Evaluate  impacts  on  the  plant   community  over  Ome   Reference  state/sites   •  Compile  and  collate    effects  of   land  management  on  criteria     (10)  and  indicators    (22)   Score  all  22  indicators  for  ‘transformaOon  site’  relaOve  to  the   ‘reference  site’.      0  =  major  change;    1  =  no  change     Derive  weighted  indices  for  the  ‘transformaOon  site’  i.e.  regeneraOve   capacity  (58%),  vegetaOon  structure  (27%)  and  species  composiOon  (18%)   by  adding  predefined  indicators   Generate  total  indices  for  ‘transformaOon  site’  for  each  year  of  the   historical  record.  Validate  using  Expert  Knowledge  
  • 42. Condi2on   Key  Result  Areas   components  (3)   (10)   [VAST]   Fire  regime   Key  Performance  Indicators     (22)   1.    Area  /size  of  fire  foot  prints     2.    Number  of  fire  starts     Regenera2ve  capacity   Soil  hydrology   3.    Soil  surface  water  availability   4.    Ground  water  availability     Soil  physical   5.    Depth  of  the  A  horizon     state   6.    Soil  structure   Soil  nutrient   7.    Nutrient  stress  –  rundown  (deficiency)  relaOve  to  soil  ferOlity     state   8.    Nutrient  stress  –  excess  (toxicity)  relaOve  to  soil  ferOlity   Soil  biological   9.    Recyclers  responsible  for  maintaining  soil  porosity  and  nutrient  recycling     state   10.    Surface  organic  maeer,  soil  crusts     Species   Composi2on   Vegeta2on   structure   ReproducOve   11.    ReproducOve  potenOal  of  overstorey  structuring  species     potenOal   12.    ReproducOve  potenOal  of  understorey  structuring  species     Overstorey   structure   13.    Overstorey  top  height  (mean)  of  the  plant  community     14.    Overstorey  foliage  projecOve  cover  (mean)  of  the  plant  community     15.    Overstorey  structural  diversity  (i.e.  a  diversity  of  age  classes)  of  the  stand   Understorey   16.    Understorey  top  height  (mean)  of  the  plant  community     structure   17.    Understorey  ground  cover  (mean)  of  the  plant  community     18.    Understorey  structural  diversity  (i.e.  a  diversity  of  age  classes)  of  the  plant     19.    DensiOes  of  overstorey  species  funcOonal  groups     Overstorey   composiOon   20.    RelaOve  number  of  overstorey  species  (richness)  of  indigenous  :exoOc  spp   Understorey   21.    DensiOes  of  understorey  species  funcOonal  groups     composiOon   22.    RelaOve  number  of  understorey  species  (richness)  of  indigenous  :exoOc  spp  
  • 43. Popula2ng  the  VAST-­‐2  criteria   VAST-­‐2  key  ecological  criteria     &  indicators   Fire  regime   Soil  hydrology   Soil  physical  state   Soil  nutrient  state   Soil  biological  state   Reproduc2ve  poten2al   Overstorey  vegeta2on  structure   Reference     state   *   *   *   **   *   ***   ***   Transforma2on   site   *   *   **   *   *   ***   **   Understorey  vegeta2on  structure   ***   ***   Overstorey  species  composi2on   ***   ***   Understorey  species  composi2on   ***   ***   ***  QuanOtaOve  data  /info   *  QualitaOve  data  /info  
  • 44. 1   VAST-­‐2  integra2on  hierarchy   3   Vegeta2on   Transforma2on   score   10   Afribute   groups   Diagnos2c   afributes   22   RegeneraOve   Capacity   (55%)   Fire   Soil   (2)   Structure   (2)   VegetaOon   Structure   (27%)   Reprod   Overstorey   potent   (3)   (2)   Nutrients   Biology   (2)   (2)   Species   ComposiOon   (18%)   Understorey   (3)   Overstorey   (2)   Hydrology   (2)   Indicators   Understorey   (2)  
  • 45. Importance  of  dynamics   Rainfall  is  assumed  to  be  main  driver  of  system  dynamics   •  Period  1900  -­‐  2013   •  Average  seasonal  rainfall  (summer,  autumn,  …)   •  Rainfall  anomaly  is  calculated  above  and  below  the  mean   •  Two  year  running  trend  line  fieed   NB:  Must  calibrate  remote  sensing  to  account  for  dynamics     •  e.g.    ground  cover,  greenness  and  foliage  projecOve  cover    
  • 46. 5   4   3   2   1   0   -­‐1   -­‐2   -­‐3   -­‐2   1901   1904   1907   1910   1913   1916   1919   1922   1925   1928   1931   1934   1937   1940   1943   1946   1949   1952   1955   1958   1961   1964   1967   1970   1973   1976   1979   1982   1985   1988   1991   1994   1997   2000   2003   2006   2009   2012   1901   1904   1907   1910   1913   1916   1919   1922   1925   1928   1931   1934   1937   1940   1943   1946   1949   1952   1955   1958   1961   1964   1967   1970   1973   1976   1979   1982   1985   1988   1991   1994   1997   2000   2003   2006   2009   2012   -­‐4   1901   1904   1907   1910   1913   1916   1919   1922   1925   1928   1931   1934   1937   1940   1943   1946   1949   1952   1955   1958   1961   1964   1967   1970   1973   1976   1979   1982   1985   1988   1991   1994   1997   2000   2003   2006   2009   2012   -­‐2   1901   1904   1907   1910   1913   1916   1919   1922   1925   1928   1931   1934   1937   1940   1943   1946   1949   1952   1955   1958   1961   1964   1967   1970   1973   1976   1979   1982   1985   1988   1991   1994   1997   2000   2003   2006   2009   2012   3   Seasonal  rainfall  anomaly  (Lat    -­‐32.404,  Long    152.496)   2   1   0   Summer   -­‐1   6   4   2   0   Autumn   -­‐2   Winter   3   2   1   0   Spring     -­‐1   Source:  BOM  
  • 47. Are  we  there  yet?     Results  
  • 48. Key  Result  Areas  –  Regenera2ve   capacity  
  • 49. Key  Result  Areas  –  Regenera2ve   capacity  
  • 50. Key  Result  Areas  –  Vegeta2on  structure  
  • 51. Key  Result  Areas  –    Species  composi2on  
  • 52. VAST-­‐2  Report  Card  
  • 53. Lessons  from  Bridge  Hill  Ridge   •  BHR  is  atypical  of  the  usual  restoraOon  effort  and   regeneraOon  outcome  that  follows  sand  mining   •  The  restoraOon  effort  and  regeneraOon  outcome  at  BHR  is   very  good   •  A  great  deal  more  money  was  spent  on  BHR  than  other   similar  mining  paths   •  The  quality  of  the  restoraOon  effort  and  regeneraOon   outcome  is  directly  related  to  the  amount  spent  
  • 54. What  else  could  be  done  to  improve  the   site  toward  the  reference  state?   •  Consider  establishing  an  appropriate  experimental  fire   regime  checking  for  weed  incursions   •  Allow  more  Ome  for  incremental  change  in:   –  Understorey  Species  Composi<on     –  Overstorey  Vegeta<on  Structure     –  Reproduc<ve  Poten<al  (Understorey)  
  • 55. Conclusions   •  The  VAST-­‐2  report  card  helps  tell  the  story  of  change  and   trend  in  vegetaOon  condiOon   •  The  restoraOon  effort  and  regeneraOon  outcome  at  BHR  is   very  good     •  A  similar  approach  could  be  applied  to  exisOng,  proposed  and   future  mined  sites  
  • 56. VAST  helps  in  ‘telling  the  story’  
  • 57. VAST  helps  in  ‘telling  the  story’   Predic2ons  of  mature  forest   (Bunning’s  Enquiry  1974)  
  • 58. More info & Acknowledgements   More  informa2on   hep://www.vaseransformaOons.com/   hep://portal.tern.org.au/search   hep://aceas-­‐data.science.uq.edu.au/portal/       Acknowledgements   •  Mae  Bolton,  Barry  Fox,  Mike  Dodkin  and  Shane  Cridland  assisted  with  data  and   assessment   •  University  of  Queensland,  Department  of  Geography  Planning  and   Environmental  Management  for  ongoing  research  support   •  Many  public  and  private  land  managers,  land  management  agencies,   consultants  and  researchers  have  assisted  in  the  development  of  VAST-­‐2