Dr. Chris Wullems - Queensland University of Technology - Research update on level crossing safety


Published on

Dr Chris Wullems, Postdoctoral Research Fellow, Rail CRC/ Queensland University of Technology delivered this presentation at the Rail Safety Conference 2014. Rail Safety 2014 brought together the key national decision-makers to deliver new ideas and develop innovative ways to leverage technology for safer outcomes.

For more information, please visit http://www.railsafetyconference.com.au/rs14

Published in: News & Politics
  • Be the first to comment

  • Be the first to like this

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

Dr. Chris Wullems - Queensland University of Technology - Research update on level crossing safety

  1. 1. railcrc.net.au   Level  Crossings   Suite  of  Rail  CRC  Level  Crossing  Research   RISSB  Rail  Safety  2014   Wednesday  26th  March  2014   railcrc.net.au  
  2. 2. •  10  year  period  from  2000-­‐20092   –  Approx.  a  3rd  of  rail-­‐related  fatali1es   resulted  from  collisions  between  road  and   rail  vehicles  (695  collisions  resulKng  in  97   fataliKes)   –  Approx.  45%  of  collisions  (312)  occurred  at   level  crossings  with  passive  controls   1  -­‐  Source:  2009  Level  Crossing  Stocktake,  Railway  Industry  Safety  and  Standards  Board,  Australia   2  -­‐  Source:  2011  Level  Crossing  Safety  BulleCn,  Independent  Transport  Safety  Regulator,  NSW   Photo  source:  2007  Office  of  the  Chief  InvesCgator,  Rail  Safety  InvesCgaCon  Report  №  2007  /  09  -­‐  Level  Crossing  Collision  V/Line  Passenger  Train  8042  and  a  Truck  Near  Kerang,  Victoria   IntroducKon   Australia1   Public   8,838   %  with  acKve  protecKon   33%   Private   12,508   %  with  acKve  protecKon   0.5%   Maintenance   566   %  with  acKve  protecKon   1%   RISSB  Rail  Safety  2014   2  
  3. 3. What  are  LCLCWDs?  (1)   Low  Cost  Level  Crossing  Warning  Devices   •  Use  of  innovaKve  &  alternaKve  technologies  to  reduce  lifecycle  costs   –  InstallaKon  and  civil  works  –  e.g.  trenching,  cable  runs,  under  road  /  under   track  bores,     –  Costs  associated  with  train  detecKon  based  on  wheel-­‐rail  interface   •  Track  improvement  work  (ballast  cleaning,  head  bonding,  etc.)   •  Re-­‐commissioning  of  seasonal  lines   –  Provision  of  mains  power   •  For  installaKon  at  low-­‐exposure  level  crossings  with  passive  controls   •  Why?   –  More  level  crossings  with  passive  controls  can  be  upgraded  for  the  same   budget  than  with  tradiKonal  warning  device   •  Larger  and  earlier  safety  benefit   RISSB  Rail  Safety  2014   3  
  4. 4. Suite  of  Affordable  RLX  Projects   RISSB  Rail  Safety  2014   4   Industry standards body / ALCAM committee Project R2.121 - Low Cost Railway Level Crossing Risk and Legal Evaluation Project R3.122 - Affordable Railway Level Crossings Development of nationally consistent system definition and requirement specification National Low Cost Level Crossing Trial Programme Development of a safety argument supporting low-cost level crossings with lower level of safety integrity Future industry code of practice Nationally consistent generic application safety case Australian Level Crossing Assessment Model Operational evidence (safety qualification data) Expert peer-review Legal advice Engagement with regulator Development of Decision-making framework
  5. 5. Rail  CRC  NaKonal  Low-­‐cost  Level  Crossing   Trial  Programme  &  Risk  and  Legal   EvaluaKon  Project   RISSB  Rail  Safety  2014   5  
  6. 6. •  Located on North Coast Line •  Narrow gauge, bi-directional track •  25KV AC overhead power •  Preceding cutting and curve •  60 km/h [70km/h Tilt-train] •  Freight & passenger traffic •  Located on North Coast Line •  Standard gauge, bi-directional track •  115km/h freight [125km/h passenger] •  Freight & passenger traffic •  Located on Geelong-Ballarat freight corridor •  Broad gauge, bi-directional track •  Low-frequency freight traffic
  7. 7. railcrc.net.au   Train  detec1on  /  track   occupancy  technology   System  1  –  Track-­‐mounted  anisotropic   magneto  resisKve  (AMR)  sensors   System  2  –  Radar   Power  supply     Solar     LCLCWD  component   connec1vity   Wireless   Safety  integrity*     SIL2  (THR  <  1E-­‐6  /  hour)     Notes   AMR  sensors  are  wireless.  Internal  baderies  providing  7-­‐year  nominal  operaKng  life.     Radar  train  detecKon  soluKon  mounted  outside  danger  zone.  
  8. 8. railcrc.net.au   Train  detec1on  /  track   occupancy  technology   Frauscher  RSR180  wheel  sensors   Power  supply     Solar     LCLCWD  component   connec1vity   Cables  (clipped  to  rail  or  buried  route)   Safety  integrity*     SIL3  (THR  <  1E-­‐7  /  hour)     Notes   Meets  Swiss  MICRO  low-­‐cost  standard.  Railways  permided  cables  to  be  clipped  to  rail  for  trial.  
  9. 9. railcrc.net.au   Train  detec1on  /  track   occupancy  technology   Frauscher  RSR123  wheel  sensors   Power  supply     Solar     LCLCWD  component   connec1vity   Wireless  (Level  crossing  supports   installaKon  with  or  without  cables)   Safety  integrity*     SIL4  (THR  <  1E-­‐8  /  hour)     Notes   Modular  design  upgradable  to  level  crossing  suitable  for  deployment  at  high-­‐exposure  sites.    
  10. 10. RISSB  Rail  Safety  2014   10  
  11. 11. Making  a  case  for  Low  Cost  Level   Crossings   •  Significant  proporKon  of  equipment  cost  is  influenced  by  safety  integrity   requirements   –  More  demanding  development  processes  that  are  reflected  in  development   costs   PracCce  of  requiring  all  signaling  equipment  to  have  a  SIL4  raCng  can  create  a   distorCon  in  safety  spending  where  level  of  risk  reducCon  is  overkill   RISSB  Rail  Safety  2014   11  
  12. 12. Argument  for  UKlizaKon  of  Warning   Devices  with  Lower  SIL   •  Barriers  to  developing  argument   –  Lack  of  industry  accepted  risk  acceptance  criteria  /  limits  of  tolerability  (individual  risk)   •  Fundamental  to  developing  safety  targets  (tolerable  hazard  rates)   •  Informs  disproporKon  factor  in  meeKng  legal  duty   –  Lack  of  industry  accepted  safety  targets   •  Fundamental  for  determining  magnitude  of  risk  reducKon  required   •  Fundamental  for  SIL  apporKonment  process   •  Our  view  is  that  this  approach  should  work  within  the  current  legal  and  regulatory   framework   RISSB  Rail  Safety  2014   12     Safety  integrity  for  safety  funcKon:  warn  level  crossing  user  of  approaching  train     be  commensurate  to  magnitude  of  risk  reducKon  required  to  meet  the  tolerable  hazard   rate  (THR)  for  system-­‐hazard:  collision  between  road  and  rail  vehicle    
  13. 13. Low-­‐Cost  Rail  Level  Crossing  Risk  &   Legal  EvaluaKon   •  Development  of  robust  safety  argument  for  deployment   of  LCLCWDs   –  Risk  assessment   –  Preliminary  generic  applicaKon  safety  case   •  Peer-­‐review  of  safety  argument   •  Opinion  from  the  regulator   –  Seek  legal  advice  in  relaKon  to  Tort  liability  issue  and   whether  argument  meets  intent  of  the  naKonal  rail  safety   legislaKon   –  Development  of  a  decision-­‐making  framework  for  adopKon   of  LCLCWDs   •  Criteria  and  process  with  case  studies  -­‐  towards  an  industry   guideline     •  Retrofijng  ALCAM  to  consider  LCLCWDs  as  a  risk  control   RISSB  Rail  Safety  2014   13  
  14. 14. R2.119  Project  ParKcipants   RISSB  Rail  Safety  2014   14  
  15. 15. LimitaKons  of  Level  Crossing  Incident   Analysis   •  Number  of  level  crossing  collisions  (lagging  indicators)   insignificant  for  data  analysis     •  Near-­‐miss  occurrences  (leading  indicators)   –  Occur  with  a  frequency  orders  of  magnitude  greater  than  collisions   –  Reportable  occurrences     •  However,  there  are  issues  with  current  paper-­‐based  reporKng   –  Under-­‐reporKng  &  inconsistencies  in  reporKng   –  SubjecKvity   –  Inaccuracies  in  retrospecKve  descripKon  of  events   RISSB  Rail  Safety  2014   15  
  16. 16. LimitaKons  of  Level  Crossing  Incident   Analysis   •  Pikalls  of  causal  analysis  on  sparse  data1     –  Over-­‐interpretaKon   –  Tendency  for  analysts  to  idenKfy  causal  factors   representaKve  of  a  category  of  failure  rather  than   idenKfying  characterisKcs  that  may  disKnguish  it   –  Current  near-­‐miss  reporKng  does  not  describe  the  “less   visible  influences”  that  may  condiKon  an  incident       1.  Johnson,  C.  (2003).  Failure  in  Safety-­‐CriCcal  Systems:  A  Handbook  of  Incident  and  Accident  ReporCng.  Glasgow,  Scotland  Glasgow  University  Press.   RISSB  Rail  Safety  2014   16  
  17. 17. R2.119  Baseline  Rail  Level  Crossing   Video   Data  CollecKon  Infrastructure   North  Coast  Line  ≈  1680km   Currently  3  Tilt-­‐trains,  later  in  the  year  4   824  public  level  crossings   Tilt-train •  Forward facing video •  2Tb (2048 Gb) video / fortnight / train •  Total storage 200Tb (204,800 Gb) •  Disk swap procedure •  Periodic ATP downloads 824    Level  crossings   451    Public   248    OccupaKonal      28    Pedestrian      97    Queensland  Rail  
  18. 18. Video  AnalyKcs   Aminmansour  S,  Maire  F  &  Wullems  C.  “Video  Analy1cs  for  the  Detec1on  of  Near-­‐miss  Incidents  on  Approach  to  Railway   Level  Crossings”,  in  Proceedings  of  the  Joint  Rail  Conference  (JRC  2014),  April  2014,  Colorado  Springs,  CO,  USA   18  
  19. 19. Manual  Scoring  Process   19  
  20. 20. PotenKal  Benefits  –  Baseline  RLX  Video   •  The  integrated  approach  to  safety  data  recording  and  analysis  insures   systemic  factors  that  condi1on,  influence  or  poten1ally  contribute  to  an   occurrence  are  captured  both  for  safety  occurrences  and  precursor  events     •  Provides  a  rich  tapestry  of  antecedent  causal  factors  that  can  significantly   improve  learning  around  accident  causaKon     •  Can  provide  benefits  to  railways  through:   –  The  development  of  targeted  and  more  effecKve  countermeasures   –  Beder  risk  models  to  esKmate  risk  and  prioriKze  safety  funds     •  Inform  improvements  to  exisKng  paper-­‐based  reporKng   –  Beder  criteria  and  sub-­‐categorizaKon  consistent  with  statutory  reporKng  requirements   –  Simulator-­‐based  training  for  drivers  to  improve  objecKvity  of  reporKng   RISSB  Rail  Safety  2014   20  
  21. 21. QuesKons   RISSB  Rail  Safety  2014   21