• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Disruptive Technologies: What to PIC?
 

Disruptive Technologies: What to PIC?

on

  • 812 views

Presented at 2012 Optical Fiber Communications Conference/National Fiber Optic Engineer's Conference, Los Angeles, CA, Mar. 5, 2012

Presented at 2012 Optical Fiber Communications Conference/National Fiber Optic Engineer's Conference, Los Angeles, CA, Mar. 5, 2012

Statistics

Views

Total Views
812
Views on SlideShare
812
Embed Views
0

Actions

Likes
0
Downloads
25
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Disruptive Technologies: What to PIC? Disruptive Technologies: What to PIC? Presentation Transcript

    • The 3 W Coherent  Transponder Dave Welch, Founder and EVP 1 | © Infinera Corporation 2012 
    • Or… W/Gb needs to scale  with bandwidth growth2 | © Infinera Corporation 2012 
    • The Short  Answer To scale power in the network • Router bypass is required • Layer convergence is required • MPLS management is required • In addition, power has to be reduced in each layer • The “geometries” of the Long Haul network will  not change3 | © Infinera Corporation 2012 
    • Power Use:  The NETWORK Problem Routing (IP/MPLS)Service Power consumed at all  network layers Switching Power consumed to inter‐ connect network layers Transport The more a service hops  between layers, the more  power consumed Highest impact to power savings:  Convergence 4 | © Infinera Corporation 2012 
    • Network Power:  WDM + SwitchingRouting (IP/MPLS) Power from WDM and  OTN/Switching layers Plus…power to inter‐Switching connect the two: Solution:  converged  PIC Enabled switching + WDMTransport Converged Optical  No more transponders Switching/Transport Reduced Boxes and Inter‐Connections 5 | © Infinera Corporation 2012 
    • Converged WDM + Switching:  The Result Source:  Typical national/regional WDM  + switch network with multi‐Terabit OXC  Power OPEX ($000) and 100G WDM (Infinera study) $70,000 Y10 $60,000 Y9 $50,000 Y8 Y7 $40,000 Y6 $30,000 Y5 Y4 $20,000 Y3 $10,000 Y2 $0 Y1 WDM +  Integrated  Integrated  Stand‐alone OXC WDM + Switching WDM + Switching w/discrete optics w/PICs Fewer boxes and inter‐connections save power6 | © Infinera Corporation 2012 
    • TOTAL Network Power Converged Packet –Routing (IP/MPLS) Optical Transport Reduce number of router Switching hops and Router‐Optical  interconnectionsTransport “Router bypass” Converged Optical +  MPLS Switching (P‐OTN) Optimize total network  power 7 | © Infinera Corporation 2012 
    • MPLS Transport ‐ Power Savings 6 5 Separate router and Modeling based on core  transport 4 Packet Aware transport nation‐wide IP/Optical Normalized Power network 3 • spanning 18,000km  2 • 96 city nodes 1 Power estimates based on  0 0.5 1 2 4 8 Terabit scale routers &  Normalized Network Load transport systems 8 | © Infinera Corporation 2012 
    • Axioms to keep in mind Coherent is a network requirement • All fibers that require > 1Tb/s • QPSK is the coherent technology for Long Haul,  • 16 QAM does not meet broad based network needs Bandwidth per unit needs to scale with bandwidth  consumption • OPEX requirement • Requires superchannels or will not keep pace 25‐30% of power consumption is for chassis cooling  (i.e. fans) The optical engine needs to minimize cooling  required • Optics Tj – 75oC; Electronics Tj – 125oC9 | © Infinera Corporation 2012 
    • Implementing a 1Tbps Super‐channel for LH networks C Band 1 Tb/s PM‐QPSK 375 GHz 375 GHz 375 GHz 1 Laser 2 Lasers 10 Lasers 4 modulators 8 modulators 40 Modulators 320 Gbaud; 640 GS/s Electr. 160 Gbaud; 320 GS/s Electr. 32 Gbaud; 64 GS/s Electr. ~ 11 nm Silicon  ~16nm Silicon ~28nm Silicon Time to Market: ~10 years Time to Market: ~7 years Time to Market: ~2 years PICs are required10 | © Infinera Corporation 2012 
    • 1Tbps Super Channel Tx and Rx 10 channels of Tx 1T TX PIC 1 Tb/s in a single line card 1T RX PIC 10 channels of RxPIC’s are the Only Practical Approach to Implementing Large Scale Coherent11 | © Infinera Corporation 2012 
    • 5x100Gbps PICs in Production Today500G Super‐Channel Network Deployments Start in 2Q2012 COST SIZE CAPACITY  RELIABILITY 500G 500G POWER Tx PIC Rx PIC Number of Channels 5 x 100G Monolithic InP Chips 2 Optical Functions > 600 “Gold Box” Replacements > 100 Fiber Jumper Replacements > 250 5x100G Tx and Rx Modules are Roughly Same Size as 10x10G12 | © Infinera Corporation 2012 
    • Increasing Spectral Efficiency with Higher Order  Modulation Mod. Reach Fiber Capacity FormatPM‐BPSK 6000 km 6TbpsPM‐QPSK 3000 km 12TbpsPM‐16QAM 800 km 24Tbps BPSK QPSK 8QAM 16QAMPhotonic Integration Enables a Single Cost Efficient 1Tbps Line Module  with SW Configurable Modulation Formats 13 | © Infinera Corporation 2012 
    • Sources of Power in Coherent DSPs Relative Watt Per 100 Gb/s 1.0 5% 25% ADC/DAC30% SERDES 0.5 65nm DSP 10% Soft FEC 0.35 40nm Other 0.25 28nm 20nm 30% Coherent Power Use by  56GS/s 64GS/s 128GS/s Functional Blocks Relative Power vs.  ADC Speed Flex Coherent – also means Flex Power14 | © Infinera Corporation 2012 
    • FEC and Framer Integration Today Framer FEC/DSP Phy Tx/Rx Tomorrow Framer/FEC/DSP Phy Tx/Rx • Integration required for SERDES power elimination • Optics will remain isolated as different cooling requirements15 | © Infinera Corporation 2012 
    • Power Savings for Coherent DSP/ASICs Relative Watt Per 100 Gb/s 1.0 Moore’s Law:  power gains  0.75 from CMOS feature size  reduction 0.5 Reduced “power per bit”  using higher‐order  modulation for metro Up to 50% reduced DSP  50,000 12,000 3000 power for metro CD Tolerance [ps/nm]16 | © Infinera Corporation 2012 
    • Conclusion Network power driven first and foremost by network  convergence and optimization  Coherent is required; QPSK is the LH standard Bandwidth scaling requires PICs and superchannels PICs enable system level power reduction Flexible Coherent for ASIC/DSP application  and  power optimization17 | © Infinera Corporation 2012 
    • Thank You18 | © Infinera Corporation 2012