Low-Bend Fiber Technology


Published on

  • Be the first to comment

  • Be the first to like this

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

Low-Bend Fiber Technology

  1. 1. March 2011<br />1<br />Low-Bend Fiber TechnologyRoger Krähenbühl<br />
  2. 2. March 2011<br />2<br />For many Generation: at Home<br />El.<br />Opt.<br />El.<br />Opt.<br />Web & Networkin the home<br />Fiber-In-The-Home<br />Running water in the home<br />Electricityin the home<br />Phone & Radioin the home<br />TV & Faxin the home<br />Hello World<br />Hello World<br />Hello World<br />H+S provides excellent connectivity solution <br />
  3. 3. March 2011<br />3<br />Suhner & Co. AG, Herisau, AR founded in 1864<br />R.+ E. Huber AG,Pfäffikon, ZH founded in 1882<br />For many Generation: HUBER+SUHNER<br />the two companies merged in April, 1969<br />HUBER+SUHNER developed from a company only active in CH into an international group<br />
  4. 4. March 2011<br />4<br />Communication<br />Transportation<br />Industrial<br />Low Frequency <br /> including Carbon Fiber Composites<br />Excellence in Connectivity Solutions: 3 x 3 Strategy<br />Radio Frequency<br />Fiber Optics<br />With all three Technologies in all three Markets - Worldwide<br />
  5. 5. March 2011<br />5<br />Fiber Optics Division<br />
  6. 6. March 2011<br />6<br />Why Fiber Optics?<br />One optical fiber can replace thousands of electric wires.<br />
  7. 7. March 2011<br />7<br />Today: Fiber to the Home becomes a Reality<br />Fiber-to-the home requires new connectivity solutionsPlease visit us in hall 1.1 / booth A56<br />
  8. 8. March 2011<br />8<br />Near Future: Fiber in the Home<br />plug‘n‘play<br />safety<br />asap<br />www.fiberyourhome.com<br />
  9. 9. March 2011<br />9<br />Fiber to/in the Home: Installer Concerns<br />Fast installation<br />High yield<br />Easy handling<br />To overcome these concerns fiber manufacturer came up with new types of bend-insensitive optical fibers <br />To give confidence H+S studied and tested such low-bend fibers <br />
  10. 10. Roger Krähenbühl / Low Bend Fiber<br />10<br />Bend Single Mode Fiber: Physical Fundamentals<br />Loss due to bend SM fiber<br /> (improper installations, etc.) <br /><ul><li>Radius dependent:smaller radii => higher loss
  11. 11. Wavelength dependent:longer wavelength => larger mode size => higher loss
  12. 12. Index contrast higher contrast => better confinement</li></ul>-> new low-bend fiber types<br />
  13. 13. Roger Krähenbühl / Low Bend Fiber<br />11<br />Comparison: standard SM, trench-assisted, nano-structured<br />Mode Profile<br />StandardSingle Mode Design<br />Index Profile<br />Fiber Spec.<br />9.20.4mm<br />Trench-Assisted Design<br />Bend-optimizedDesign<br />8.90.4mm<br />Nano-Structured Design<br />8.60.4mm<br />Trench-assisted (A2), nano-structured (“A3”) and standard fibers (D) are tested, their inter-compatibility verified, and the results compared.<br />
  14. 14. Roger Krähenbühl / Low Bend Fiber<br />12<br />Mechanical Characteristics: Bending Behavior<br />nano-fiber<br />nano-fiber<br />trench-fiber<br />0<br />trench-fiber<br />0.0<br />-1<br />-0.2<br />-0.4<br />-2<br />-0.6<br />-3<br />-0.8<br />Optical Transmission [dB/turn]<br />-1.0<br />Optical Transmission [dB/turn]<br />-4<br />r=7.5 mm<br />-1.2<br />SMF<br />l=1550 nm<br />-5<br />-1.4<br />SMF<br />-1.6<br />-6<br />-1.8<br />Wavelength [nm]<br />-7<br />-2.0<br />1300<br />1350<br />1400<br />1450<br />1500<br />1550<br />1600<br />1650<br />3<br />4<br />5<br />6<br />7<br />8<br />9<br />10<br />11<br />12<br />13<br />Radius [mm]<br />Really advanced technology?<br />Bending tests on CW-E9<br />Both low-bend fibershold up to their claims. Nano- outperforms trench-fiber.<br />
  15. 15. up to 450N/cm,1min each, l = 1550nm<br />0.5<br />0.4<br />SMF<br />0.3<br />trench-fiber<br />0.2<br />nano-fiber<br />0.1<br />Change of Attenuation [dB]<br />0.0<br />500<br />Compressive Stress [N/cm]<br />-0.1<br />400<br />300<br />200<br />100<br />0<br />1<br />3<br />5<br />7<br />9<br />11<br />13<br />15<br />17<br />19<br />21<br />23<br />25<br />27<br />Time [min]<br />Temperature Cycling CWJH-H27 <br />Crush tests on CW-E9<br />14<br />12<br />SMF<br />10<br />Insertion Loss Variation [dB] <br />8<br />6<br />4<br />2<br />0<br />80<br />trench-fiber<br />nano-fiber<br />60<br />40<br />20<br />Temperature [C]<br />0<br />-20<br />-40<br />-60<br />l=1550 nm<br />0<br />10<br />20<br />30<br />40<br />50<br />60<br />Time [h]<br />Roger Krähenbühl / Low Bend Fiber<br />13<br />Mechanical Characteristics: Crush Tests, Temperature Cycling<br />Low-bend fibers perform better under crush and temperature cycling tests than SMF. <br />
  16. 16. Roger Krähenbühl / Low Bend Fiber<br />14<br />Splicing Tests: Performance Comparison<br />SMF - trench-fiber<br />SMF - nano-fiber<br />Ease of Splicing and splice performance testing: All combinations for SMF, trench-, and nano-structured fiber<br />Easy handling ?<br />Loss Distribution per Splice <br />60<br />Mean:0.01 dB0.03 dB0.08 dB<br />50<br />SMF - SMF<br />40<br />30<br />%<br />20<br />10<br />0<br />0.15<br />0.01<br />0.03<br />0.05<br />0.07<br />0.08<br />0.10<br />0.12<br />0.14<br />0.00<br />0.02<br />0.04<br />0.06<br />0.09<br />0.11<br />0.13<br />Splice Loss [dB]<br />Splicing of fibers with low-bend SM fibers needed much more exploration of process parameter than with the standard SM fiber types. <br />They have slightly higher splice losses, maybe due to higher core ex-centricity (less experienced, larger fabrication tolerance chain)<br />Low-bend fibers are well suited as higher splice loss can be over-compensated<br />
  17. 17. SMF<br />trench-assisted<br />nano-structured<br />Roger Krähenbühl / Low Bend Fiber<br />15<br />Assemby Process: Endface Polishing<br />Assembling using today's process for standard G.652 fiber: <br />SEM: <br />No strange behavior during assembly process except for the visual inspection<br />
  18. 18. Roger Krähenbühl / Low Bend Fiber<br />16<br />Assembling Capabilities: Endface geometry<br />Assembling using today's process for standard G.652 fiber: <br />SMF<br />trench-assisted<br />nano-structured<br />Measured endface geometry are well within allowed tolerances (IEC 61755-3-1)<br />
  19. 19. Roger Krähenbühl / Low Bend Fiber<br />17<br />Assembly Characteristics: Each-Each Insertion Loss<br />Each-Each Loss Distribution<br />60<br />SMF - SMF<br />50<br />SMF - trench-fiber<br />SMF - nano-fiber<br />40<br />30<br />%<br />20<br />10<br />0<br />0.00<br />0.02<br />0.04<br />0.06<br />0.08<br />0.10<br />0.12<br />0.14<br />0.16<br />0.18<br />0.20<br />0.22<br />0.24<br />0.26<br />0.28<br />Insertion Loss [dB]<br />Insertion Loss measurements; IEC 61300-3-34 @1310nm 13x13 each to each measurements; <br />plug‘n‘play<br />Mean:0.07 dB0.10 dB0.11 dB<br />Blink: easy install, laser protection<br />Both types of low-bend fibers are quite well compatible to standard SM fiber. <br />Due to their slightly higher loss full premium quality may be harder to achieve.<br />
  20. 20. Roger Krähenbühl / BendOptimized MM Fibers<br />18<br />Low-Bend Multimode Fibers<br />StandardSingle ModeDesign<br />Index Profile<br />Standard MultimodeDesign<br />Bend-optimizedDesign<br />Analog testing of bend-optimized and standard multimode fibers of different manufactures sowed similar results as in the single mode case.<br />More Information can be found in the two white papers on low-bend fibers at:<br />http://www.hubersuhner.com/products/hs-fiberoptics/hs-fiberoptic-cables/hs-p-fo-cab-know/hs-p-fo-cab-know-white.htm<br />or ask for a hard copy at our booth A56 <br />
  21. 21. Roger Krähenbühl / Low Bend Fiber<br />19<br />Fiber Reliability<br />Stress-behavior according to IEC 62048<br />Failure Probability in 20 Years for Different Lengths<br />1.E-08<br />High yield<br />10cm<br />1.E-07<br />1.E-06<br />10m<br />1.E-05<br />1000m<br />Failure Probability<br />1.E-04<br />1.E-03<br />1.E-02<br />1.E-01<br />1.E+00<br />2<br />4<br />6<br />8<br />10<br />12<br />14<br />16<br />18<br />20<br />22<br />24<br />26<br />28<br />30<br />32<br />Bend Radius [mm]<br />There is no physical reason for another lifetime behavior for the different types of fiber (stress distribution across fiber is the same).<br />To reach similar reliability as for a LISA fiber management rack (r=30mm, >1000m bend fiber) only 5cm can be bend at r=10mm and only 1cm at r= 5mm.<br />
  22. 22. Roger Krähenbühl / Low Bend Fiber<br />20<br />Summary<br />We’ve extensively studied the new low-bend fibers (SM and MM) in HUBER+SUHNER connector assemblies.<br />All low-bend fiber types clearly fulfill their specification and therefore outran their standard partners. <br />Furthermore they are well compatible to their standard fiber partners.<br />Standard assembly manufacturing process can be used. <br />Splicing is more critical for the SM low-bend fibers.<br />Lifetime reliability under very low-bending conditions is still an open question.<br />Fast installation<br />High yield<br />Easy handling<br />We do recommend to use low-bend fiber for bend and loss critical applications with the remark that splice process needs to be adapted.<br />However we do not recommend to bend any type of fiber too tight.<br />
  23. 23. March 2011<br />21<br />Thank you for your attention.<br />Please visit us in hall 1.1 booth A56<br />
  24. 24. March 2011<br />22<br />Key figures of HUBER+SUHNER Group<br />2009<br />631<br />53<br />8.4%<br />3 500<br />1 500<br />18<br />>77%<br />CHF million<br />Sales<br />Operating profit (EBIT)<br />in percentage of sales<br />Employees worldwide<br /> Employees Switzerland<br />Subsidiaries<br />Equity ratio<br />