• Like
  • Save
Problemas resueltos separata 3. cap 3
Upcoming SlideShare
Loading in...5
×
 

Problemas resueltos separata 3. cap 3

on

  • 7,502 views

 

Statistics

Views

Total Views
7,502
Views on SlideShare
7,502
Embed Views
0

Actions

Likes
2
Downloads
97
Comments
0

0 Embeds 0

No embeds

Accessibility

Upload Details

Uploaded via as Microsoft Word

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Problemas resueltos separata 3. cap 3 Problemas resueltos separata 3. cap 3 Document Transcript

    • S3P12) Una mujer sobre una escalera tira pequeños perdigones hacia una mancha sobre el piso. a) Muestre que, de acuerdo con principio de incertidumbre, la distancia 1/2 1/ 4     H  errada debe ser al menos de ∆x =      donde H es la altura   m   2g  inicial de cada perdigón sobre el suelo y m es la masa de cada uno. b) Si H = 2,0 m y m = 0,50 g ¿Cuál es ∆x? SOLUCION: Y t=0 m v(0) g H t 0 x X Analizando las componentes de movimiento, X: x ≡ 0 + v(0)t → x ≡ v (0)t...α 1 2H Y: 0 ≡ H + 0 − gt 2 → t ≡ ...β 2 g 2H De α y β se obtiene, x ≡ v(0) ...γ g Transformando γ, 2H 2H 2H x ≡ v(0) → mx ≡ mv (0) ≡ px g g g 2H → m∆x ≡ ∆px g
    • Ahora, usando el Principio de indeterminación de W Heisenberg,  , ∆x∆px ≥ 2       g ∆x∆px ≥ → ∆x  m∆x ≥ 2    2  2H  1 2H  2H → ( ∆x ) 2 ≥ × ≡ 2 m g 2m g 1 1 1 1    2  2H  4   2  H 4 → ∆x ≥     → ∆x ≥      2m   g   m   2g  1 1   2  H 4 ∆x ≥      m   2g  b) Evalúe ∆x para, H= 2,0 , m= 5x10-4 …?
    • S3P11) a) Suponga que un electrón está confinado dentro de un núcleo de 5.0 x 10-15 m de diámetro. Emplee el principio de incertidumbre para determinar si este electrón es relativista o no relativista. b) Si este núcleo contiene sólo protones y neutrones, ¿algunas de estás son partículas relativistas? Explique. SOLUCION: a) Analizando para el electrón mediante el principio de incertidumbre de W Heisenberg,  ∆x∆px ≥ , 2   → ∆x∆px ≥ → ∆x { m∆v} ≥ , m: masa del electrón, m= 9,1x10-31, 2 2  → ∆v ≥ , ∆x: confinamiento del electrón, ∆x= 5x10-15, 2∆xm  6, 63 ×10−34 → ∆v ≥ ≡ ≡ 0, 012 × 1012 : c 2∆xm 4π × 9,1× 10 × 5 × 10 −31 −15 → v : c , ¡Por lo tanto el electrón podría ser relativista! b) Análogamente, considerando protones mp= 1,67x10-27,  6, 63 ×10−34 → ∆v ≥ ≡ ≡ 0, 065 ×108 : 0, 022c 2∆xm 4π ×1, 67 × 10 × 5 ×10 −27 −15 → v : 0, 022c , ¡Por lo tanto los ps o ns no serian necesariamente relativistas!
    • S3P17) Un electrón Un electrón está contenido en una caja unidimensional de 0,200 nm de ancho. a) Dibuje un diagrama de nivel de energía para el electrón en niveles hasta n = 4 b) Encuentre la longitud de onda de todos los fotones que pueden ser emitidos por el electrón al hacer transiciones que a la larga lo llevarán del estado n = 4 al estado n = 1. SOLUCION: De acuerdo al modelo de partícula confinada en una caja, los niveles de energía accesibles están dados por la siguiente ecuación,  h2  2 En ≡  2 n , por lo tanto,  8mL  a) Para el diagrama de niveles de energía hasta n=4,  ( 6, 63 ×10−34 )  2   2 En ≡  2 n ≡ 15,1×10−19 ≡ 9, 44n 2 (eV )  8 ( 9,1× 10 ) ( 0, 2 ×10 )  −31 −9   Calculando, E1 ≡ 9, 44 (1) 2 ≡ 9, 44 eV , E2 ≡ 37, 76 , E3 ≡ 84,96 , E4 ≡ 151, 04 b) Para todas las combinaciones posibles en la desexcitacion electrónica, usamos la ecuación, hc ( 6, 63 ×10 ) ( 3 ×10 ) ≡ 1243 −34 8 hc ∆E ≡ hν ≡ →λ ≡ ≡ λ ∆E ∆E ∆E 1243 λ( nm) ≡ , ∆E (eV ) E4 − E3 ≡ 66, 08 → λ1 ≡ 18,8 ,
    • E3 − E2 ≡ 47, 2 → λ2 ≡ 26,3 , E2 − E1 ≡ 28,32 → λ3 ≡ 43,9 , E3 − E1 ≡ 75,52 → λ4 ≡ 16,5 , E4 − E2 ≡ 113, 28 → λ5 ≡ 11, 0 y E4 − E1 ≡ 141, 6 → λ6 ≡ 8,8