SlideShare a Scribd company logo
1 of 5
Download to read offline
P. R. Mistry, V. H. Pradhan / International Journal of Engineering Research and Applications
               (IJERA)                 ISSN: 2248-9622           www.ijera.com
                     Vol. 2, Issue 6, November- December 2012, pp.242-246
Analytic Solution Of Burger’s Equations By Variational Iteration
                            Method
                                     P. R. Mistry* and V. H. Pradhan**
                *
                    (Department of Applied Mathematics & Humanities, S.V.N.I.T., Surat-395007, India)
               **
                    (Departments of Applied Mathematics & Humanities, S.V.N.I.T., Surat-395007, India)



Abstract
By means of variational iteration method the                    2 VARIATIONAL ITERATION METHOD:
solutions of (1+1), (1+2) and (1+3) dimensional                 Consider the following differential equation:
Burger equations are exactly obtained. In this                  Lu  Nu  h ( x, t )                     (2.1)
paper, He's variational iteration method is                     where L is a linear operator, N a nonlinear
introduced to overcome the difficulty arising in
calculating Adomian polynomials.                                operator, and an     h ( x, t ) is the source
                                                                inhomogeneous term. The VIM was proposed by
Key words: Burger’s equation, Nonlinear time                    “He”, where a correctional functional for equation
dependent partial differential equations, Variational           (1.4.1) can be written as
iteration method and Lagrange multiplier.                       un 1 (t )  un (t ) 
                                                                t
                                                                                                             , n  0 (2.2)
1 Introduction
         We often come with non linear partial
                                                                  ( Lu ( )  Nu ( )  h ( )) d
                                                                0
                                                                          n
                                                                                         n


differential          equations      obtained       through
                                                                        Where  is a general Lagrange multiplier
mathematical models of scientific phenomena.
                                                                which can be identified optimally via the variational
There are some methods to obtain approximate                    theory. The subscript           n     indicates the        n th
solution of this kind of equation. Some of them are             approximation and           
                                                                                           u n is considered as a restricted
numerical methods, homotopy analysis,                    Exp-
                                                                variation, i.e.           un  0 . It is clear that the
                                                                                           
function method, and linearization of the equation
                                                                successive approximations   un , n  0 can be
[1, 6, 7]. In 1999, the variational iteration method
                                                                established by determining      , so we first
was developed by mathematician “He”. This method
                                                                determine the Lagrange multiplier  that will be
is used for solving linear and non linear differential          identified optimally via integration by parts. The
equations. The method introduces a reliable and                 successive approximation un ( x, t ), n  0 of the
efficient process for a wide variety of scientific and          solution u( x, t ) will be readily obtained using the
engineering applications [1, 2, 4, 5,]. It is based on          Lagrange multiplier obtained and by using any
Lagrange multiplier and it has the merits of                    selective function u 0 . The initial values u( x,0)
simplicity and easy execution. This method avoids               and   ut ( x,0) are usually used for selecting the
linearization of the problem.                                   zeroth approximation u 0 . With  determined, then
         In this paper exact solution of (1+1), (1+2)           several approximation    un ( x, t ), n  0 , follow
and (1+3) dimensional Burger equation [3] has been              immediately. Consequently the exact solution may
obtained by variational iteration method.                The    be obtained by using
mentioned           problem    has    been      solved    by     u  lim un                             (2.3)
                                                                      n
N.Taghizadeh etc. [3] by Homotopy Perturbation
Method and Reduced Differential Transformation                  3. APPLICATION OF                           VIM       FOR
                                                                BURGER’S EQUATION:
Method here in the present paper we have solved the             3.1       (1+1)-Dimensional Burgers equation
same problem by variational iteration mehod..                   u     u      2u 
                                                                    u     2   0                         (3.1.1)
                                                                t     x     x 


                                                                                                            242 | P a g e
P. R. Mistry, V. H. Pradhan / International Journal of Engineering Research and Applications
                              (IJERA)                 ISSN: 2248-9622           www.ijera.com
                                    Vol. 2, Issue 6, November- December 2012, pp.242-246
                                                                               u4  {{{{x(1  t  t 2 2  t 3 3  t 4 4
           I.C.: u  x,0       x                      (3.1.2)
                                                                                 13t 5 5 2t 6 6 29t 7 7 71t 8 8
                                                                                                             
                   Now following the variational iteration                          15         3          63        252
           method given in the above section we get the                          86t 
                                                                                     9 9
                                                                                             22t 
                                                                                                 10 10
                                                                                                          5t 
                                                                                                             11 11
                                                                                                                     t12 12
           following functional                                                                                 
                                                                                   567         315         189         126
un 1 ( x, t )  un ( x, t )                                                    t 
                                                                                  13 13
                                                                                           t 
                                                                                            14 14
                                                                                                     t 
                                                                                                       15 15
                                                                                                           )}}}}          (3.1.9)
      un                               2u                                   567      3969 59535
               u               
t
                                                           (3.1.3)

0     t
             un n
               x
                                 
                                 
                                      2n   d
                                        x  
                                                                               u5  {{{{{x(1  t  t 2 2  t 3 3  t 4 4
                                                                                           43t 6 6 13t 7 7 943t 8 8
                                                                               t 5 5                                       
           Stationary conditions can be obtained as follows:                                  45         15          1260
                                                                               3497t 9 9 27523t10 10 1477t11 11
            '    0                                                                                         
                                                                                  5670              56700             4050
                                                 (3.1.4)
           1                                                                17779t   12 12
                                                                                                     13141t  13 13
                                                                                                                       1019t14 14
                           t                                                                                     
                                                                                    68040               73710               8820
                     The Lagrange multiplier can therefore be                    63283t    15 15
                                                                                                     43363t   16 16
                                                                                                                        1080013t17 17
           simply identified as   1 , and substituting this                                                     
                                                                                   893025              1058400              48580560
           value of Lagrange multiplier into the functional
           (3.1.3) gives the following iteration equation.                       2588t   18 18
                                                                                                   162179t    19 19
                                                                                                                        16511t 20 20
                                                                                                                   
                                                                                   229635             30541455             7144200
           un 1 ( x, t )  un ( x, t )                                         207509t     21 21
                                                                                                       557t 22 22
                                                                                                                       2447t 23 23
                                                                                                                                 
            t
              un     u                   2 un     (3.1.5)                225042300            1666980 22504230
             t    un xn
           0         
                                          2
                                            x
                                                         d
                                                                             16927t 24 24 5309t 25 25             t 26 26
                                                                                                                  
                                                                               540101520 675126900 595350
                    As stated before, we can select Initial                       2t 27 27        13t 28 28          t 29 29
           condition given in the equation (3.1.2) and using                                                   
           this selection in (3.1.5) we obtain the following                     6751269 315059220 236294415
           successive approximations:                                                 t 30 30             t 31 31
                                                                                                                         )}}}}}(3.1.10)
                                                                                 3544416225 109876902975
           u1  {x  tx }                                           (3.1.6)
                                       1                                       u  x, t   u1  u2  u3  ....                (3.1.11)
           u2  {{x   (tx  t 2 x  t 3 x 2 )}} (3.1.7)
                                       3                                                       x
                                                                               u  x, t                               (3.1.12)
                                        1
           u3  {{{x  tx  t 2 x 2  t 3 x 3                                            1  t
                                        3
                                                                               3.2         (2+1)-Dimensional Burger’s equation
                              1 3 2
            (tx  t 2 x  t x ) 
                              3                                                u     u  u 
                                                    (3.1.8)
                                    2 4 3                                          u  u  
            (tx  t x  t x  t x
                    2       3    2
                                                                               t     x  y 
                                    3                                                                                       (3.2.1)
                                                                                    2u  2u 
             1           1          1
            t 5 x 4  t 6 x 5  t 7 x 6 )}}}                                 2  2 0
             3           9          63                                             x      y 
                                                                               I.C.: u  x, y,0  x  y                  (3.2.2)

                                                                               Now following the variational iteration method, we
                                                                               get the following functional




                                                                                                                        243 | P a g e
P. R. Mistry, V. H. Pradhan / International Journal of Engineering Research and Applications
               (IJERA)                 ISSN: 2248-9622           www.ijera.com
                     Vol. 2, Issue 6, November- December 2012, pp.242-246
un 1 ( x, t )  un ( x, t )                         u4  {{{{x  y  2tx
     un       u       u                             2ty  4t 2 x 2 
             un n  un n  
t
     t        x       y      (3.2.3)               4t 2 y 2  8t 3 x 3
     2u  2u              d
                                                           8t 3 y 3  16t 4 x 4
0
        2n  2n           
           x     y         
                                                        16t 4 y 4 
                                                                         416 5 5
                                                                              t x
                                                                         15
Stationary conditions can be obtained as follows:            416 5 5 128 6 6
                                                                 t y         t x
 '    0
                                                              15            3
                                                            128 6 6 3712 7 7
1    
                                       (3.2.4)
                                                                t y           t x
               t                                            3            63
                                                             3712 7 7 4544 8 8
          The Lagrange multiplier can therefore be                t y           t x
simply identified as   1 , and substituting this            63             63
value of Lagrange multiplier into the functional              4544 8 8 44032 9 9
(3.2.3) gives the following iteration equation.                    t y            t x
                                                               63             567
un 1 ( x, t )  un ( x, t )                                 44032 9 9 22528 10 10
                                                                    t y             t x
                                                               567              315
   un       u       u  
           un n  un n                               
                                                              22528 10 10 10240 11 11
                                                                     t y              t x
   t        x       y  
t
                                           (3.2.5)
    2u  2u              d
                                                               315                189
                                                              10240 11 11 2048 12 12
0
      2n  2n                                                  t y           t x
         x     y         
                                                             189               63

                                                        2048 12 12 8192 13 13
         As stated before, we can select Initial             t y          t x
condition given in the equation (3.2.2) and using         63           567
this selection in (3.2.5) we obtain the following
                                                        8192 13 13 16384t14 x 14
successive approximations:                                   t y 
                                                         567                3969
u1  {x  y  2t ( x  y ) }            (3.2.6)            16384t y
                                                                  14  14
                                                                            32768t15 x 15
                                                                         
u2  {{x  y  2tx  2ty                                     3969           59535
                          8                                 32768t y
                                                                   15  15
   4t 2 x 2  4t 2 y 2  t 3 x 3       (3.2.7)                        }}}}             (3.2.9)
                          3                                     59535
    8
    t 3 y 3}}
     3
u3  {{{x  y  2tx  2ty 
4t 2 x 2  4t 2 y 2  8t 3 x 3  8t 3 y 3
  32              32            32
 t 4 x 4  t 4 y 4  t 5 x 5 (3.2.8)
    3              3             3
  32              64           64
 t 5 y 5  t 6 x 6  t 6 y 6
    3              9             9
  128 7 7 128 7 7
       t x          t y }}}
   63               63




                                                                                         244 | P a g e
P. R. Mistry, V. H. Pradhan / International Journal of Engineering Research and Applications
               (IJERA)                 ISSN: 2248-9622           www.ijera.com
                     Vol. 2, Issue 6, November- December 2012, pp.242-246
u5  {{{{{x  y  2tx  2ty                         un 1 ( x, t )  un ( x, t ) 
4t 2 x 2  4t 2 y 2  8t 3 x 3                        un       u        u    u  
                                                                  un n  un n  un n  
8t y  16t x  16t y
      3   3       4    4       4     4                t
                                                            t       x        y    z  
                                                        
                                                                                                                 (3.3.3)
                                2752 6 6                  2u  2u  2u                 d
32t 5 x 5  32t 5 y 5             t x            0
                                                            2  2  2 
                                                                    n      n     n         
                                 45                             x     y     z         
                                                                                         
  2752 6 6 1664 7 7
        t y                t x
   45                  15                             Stationary conditions can be obtained as follows:
  1664 7 7 60352 8 8
       t y                  t x                    '    0
   15                  315                                                                      (3.3.4)
  60352 8 8 895232t 9 x 9                            1         t
          t y 
   315                        2835
                                                                The Lagrange multiplier can therefore be
  895232t y 9    9
                         7045888t10 x 10             simply identified as   1 , and substituting this
                    
       2835                     14175                 value of Lagrange multiplier into the functional
                                                      (3.3.3) gives the following iteration equation.
  7045888t y  10     10
                            1512448t11 x 11
                        
        14175                       2025              un 1 ( x, t )  un ( x, t ) 
  1512448t y  11    11
                           9102848t12 x 12              un
                                                                  u        u    u  
        2025                       8505                          un n  un n  un n  
                                                         t        x        y     z  
                                                      t
                                                                                                                (3.3.5)
  9102848t y                53825536t13 x 13            2u  2u  2u                 d
               12    12
                        
         8505                       36855             0
                                                           2  2  2 
                                                                   n      n     n          
                                                               x     y     z          
53825536t y  13    13
                           4173824t14 x 14                                              
                         
      36855                        2205               As stated before, we can select Initial condition
  4173824t y  14     14
                             2073657344t15 x 15      given in the equation (3.3.2) and using this selection
                                                    in (3.3.5) we obtain the following successive
         2205                        893025           approximations:
  2073657344t y    15      15

          893025                                      u1  {x  y  z  3t ( x  y  z ) }         (3.3.6)
  88807424t16 x 16                                   u2  {{x  y  z  3tx  3ty
                           .......}}}}} (3.2.10)
        33075                                               3tz  9t 2 x 2  9t 2 y 2
                                                                                                    (3.3.7)
                                                            9t 2 z 2  9t 3 x 3
u  x, t   u1  u2  u3  ....          (3.2.11)
                  x y                                    9t 3 y 3  9t 3 z 3}}
u  x, y , t                           (3.2.12)     u3  {{{x  y  z  3tx  3ty
                 1  2 t
                                                       3tz  9t 2 x 2  9t 2 y 2
3.3       (3+1)-Dimensional Burger’s equation
 u     u  u  u                                   9t 2 z 2  27t 3 x 3  27t 3 y 3
     u  u  u 
 t     x  y  z                                   27t 3 z 3  54t 4 x 4  54t 4 y 4
                                            (3.3.1)
      2u  2u  2u                                  54t 4 z 4  81t 5 x 5  81t 5 y 5        (3.3.8)
   2  2  2   0
     x y     z                                    81t z  81t x  81t y
                                                              5    5         6     6   6    6


I.C.: u  x, y, z,0  x    yz           (3.3.2)     81t 6 z 6 
                                                                           243 7 7 243 7 7
                                                                              t x    t y
Now following the variational iteration method, we                          7        7
get the following functional                               243 7 7
                                                             t z }}}
                                                            7



                                                                                                245 | P a g e
P. R. Mistry, V. H. Pradhan / International Journal of Engineering Research and Applications
               (IJERA)                 ISSN: 2248-9622           www.ijera.com
                     Vol. 2, Issue 6, November- December 2012, pp.242-246
u4  {{{{x  y  z  3tx  3ty                                 iteration method is a powerful mathematical tool to
                                                                 solving Burger’s equations. In our work, we use the
  3tz  9t 2 x 2  9t 2 y 2  9t 2 z 2                      Mathematica Package to calculate the series
                                                                 obtained from the variational iteration method.
  27t 3 x 3  27t 3 y 3  27t 3 z 3
  81t 4 x 4  81t 4 y 4  81t 4 z 4                          References
                                                                     1.   Sadighi A and Ganji D, Exact solution of
    1053 5 5 1053 5 5
           t x          t y                                           nonlinear diffusion equations by variational
       5               5                                                  iteration    method,    Commuters        and
                                                                          Mathematics with Applications, 54, (2007),
    1053 5 5
           t z  486t 6 x 6                                            pp. 1112-1121.
       5                                                             2.   He.J.H. Variational iteration method -- a
  1053 5 5                                                                kind of non-linear analytical technique:
        t z  486t 6 x 6                                               some examples, Internat. J. Nonlinear
     5                                                                    Mech. 34, (1999).,pp. 699–708
486t 6 y 6  486t 6 z 6                                           3.   N.Taghizadeh,         M.Akbari           and
                                                                          A.Ghelichzadeh, Exact Solution of Burgers
    7047 7 7 7047 7 7
          t x            t y                                          Equations by Homotopy Perturbation
      7                7                                                  Method      and     Reduced      Differential
                                                                          Transformation Method, Australian Journal
    7047 7 7 51759 8 8
          t z             t x                                         of Basic and Applied Sciences, 5(5):
      7                28                                                 (2011),pp. 580-589,
     ...........}}}}                                (3.3.9)         4.   Salehpoor E. and Jafari H., Variational
                                                                          iteration method: A tools for solving partial
u  x, y, z, t   u1  u2  u3  ...               (3.3.10)              differential equations, The journal of
                                                                          Mathematics and Computer Science, 2,
                     x yz
u  x, y , z , t                               (3.3.11)                 (2011)pp. 388-393.
                     1  3 t                                        5.   Wazwaz A. M.., The variational iteration
                                                                          method: A Powerful scheme for handling
3.4         (n+1)-Dimensional            Burger’s     equation            linear and nonlinear diffusion equations.
                                                                          Computer       and    Mathematics       with
u     u     u     u               u                                Applications 54, (2007) pp.933-939.
    u    u     u      ......  u                              6.   M.A. Abdou and A.A. Soliman,
t     x1    x2    x3              xn                               Variational iteration method for solving
                                                                          Burger’s and coupled Burger’s equations
      2u  2u  2u      2u                                            Journal of Computational and Applied
   2  2  2  ....        0                                        Mathematics 181 (2005), pp. 245 – 251.
     x1 x2 x3        xn 2 
                                                                     7.   Junfeng Lu, Variational iteration method
(3.4.1)                                                                   for solving a nonlinear system of second-
        u  x1 , x2 , x3 ,.........., xn , 0                             order boundary value problems, Computers
I.C.:                                               (3.4.2)               and Mathematics with Applications 54
            x1  x2  ......  xn                                        (2007), pp.1133–1138.
Similarly, we apply VIM on the equation (3.4.1) we
get the following exact solution.
u  x1 , x2 , x3 ,.............., xn , t  
 x1  x2  x3  x4  ............  xn              (3.4.3)

                    1  n t

4. Conclusion
          In this paper, the variational iteration
method has been successfully applied to finding the
solution of (1+1), (1+2) and (1+3) dimensional
Burger’s equations. The solution obtained by the
variational iteration method is an infinite power
series for appropriate initial condition, which can, in
turn, be expressed in a closed form, the exact
solution. The results show that the variational



                                                                                                       246 | P a g e

More Related Content

What's hot

Solution of a subclass of singular second order
Solution of a subclass of singular second orderSolution of a subclass of singular second order
Solution of a subclass of singular second orderAlexander Decker
 
Solution of a singular class of boundary value problems by variation iteratio...
Solution of a singular class of boundary value problems by variation iteratio...Solution of a singular class of boundary value problems by variation iteratio...
Solution of a singular class of boundary value problems by variation iteratio...Alexander Decker
 
Errors in the Discretized Solution of a Differential Equation
Errors in the Discretized Solution of a Differential EquationErrors in the Discretized Solution of a Differential Equation
Errors in the Discretized Solution of a Differential Equationijtsrd
 
International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI) International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI) inventionjournals
 
On an Optimal control Problem for Parabolic Equations
On an Optimal control Problem for Parabolic EquationsOn an Optimal control Problem for Parabolic Equations
On an Optimal control Problem for Parabolic Equationsijceronline
 
Lesson 14: Derivatives of Logarithmic and Exponential Functions
Lesson 14: Derivatives of Logarithmic and Exponential FunctionsLesson 14: Derivatives of Logarithmic and Exponential Functions
Lesson 14: Derivatives of Logarithmic and Exponential FunctionsMatthew Leingang
 
Comparative Study of the Effect of Different Collocation Points on Legendre-C...
Comparative Study of the Effect of Different Collocation Points on Legendre-C...Comparative Study of the Effect of Different Collocation Points on Legendre-C...
Comparative Study of the Effect of Different Collocation Points on Legendre-C...IOSR Journals
 
Quantum physics the bottom up approach
Quantum physics the bottom up approachQuantum physics the bottom up approach
Quantum physics the bottom up approachSpringer
 
IRJET- Wavelet based Galerkin Method for the Numerical Solution of One Dimens...
IRJET- Wavelet based Galerkin Method for the Numerical Solution of One Dimens...IRJET- Wavelet based Galerkin Method for the Numerical Solution of One Dimens...
IRJET- Wavelet based Galerkin Method for the Numerical Solution of One Dimens...IRJET Journal
 
Lesson 15: Exponential Growth and Decay
Lesson 15: Exponential Growth and DecayLesson 15: Exponential Growth and Decay
Lesson 15: Exponential Growth and DecayMatthew Leingang
 
ON COMPUTATIONS OF THPD MATRICES
ON COMPUTATIONS OF THPD MATRICESON COMPUTATIONS OF THPD MATRICES
ON COMPUTATIONS OF THPD MATRICESmathsjournal
 
Existence results for fractional q-differential equations with integral and m...
Existence results for fractional q-differential equations with integral and m...Existence results for fractional q-differential equations with integral and m...
Existence results for fractional q-differential equations with integral and m...journal ijrtem
 
Lesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric FunctionsLesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric FunctionsMatthew Leingang
 
Generalization of Tensor Factorization and Applications
Generalization of Tensor Factorization and ApplicationsGeneralization of Tensor Factorization and Applications
Generalization of Tensor Factorization and ApplicationsKohei Hayashi
 

What's hot (19)

Solution of a subclass of singular second order
Solution of a subclass of singular second orderSolution of a subclass of singular second order
Solution of a subclass of singular second order
 
Solution of a singular class of boundary value problems by variation iteratio...
Solution of a singular class of boundary value problems by variation iteratio...Solution of a singular class of boundary value problems by variation iteratio...
Solution of a singular class of boundary value problems by variation iteratio...
 
Errors in the Discretized Solution of a Differential Equation
Errors in the Discretized Solution of a Differential EquationErrors in the Discretized Solution of a Differential Equation
Errors in the Discretized Solution of a Differential Equation
 
International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI) International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)
 
On an Optimal control Problem for Parabolic Equations
On an Optimal control Problem for Parabolic EquationsOn an Optimal control Problem for Parabolic Equations
On an Optimal control Problem for Parabolic Equations
 
SPDE
SPDE SPDE
SPDE
 
Lesson 14: Derivatives of Logarithmic and Exponential Functions
Lesson 14: Derivatives of Logarithmic and Exponential FunctionsLesson 14: Derivatives of Logarithmic and Exponential Functions
Lesson 14: Derivatives of Logarithmic and Exponential Functions
 
Comparative Study of the Effect of Different Collocation Points on Legendre-C...
Comparative Study of the Effect of Different Collocation Points on Legendre-C...Comparative Study of the Effect of Different Collocation Points on Legendre-C...
Comparative Study of the Effect of Different Collocation Points on Legendre-C...
 
Quantum physics the bottom up approach
Quantum physics the bottom up approachQuantum physics the bottom up approach
Quantum physics the bottom up approach
 
IRJET- Wavelet based Galerkin Method for the Numerical Solution of One Dimens...
IRJET- Wavelet based Galerkin Method for the Numerical Solution of One Dimens...IRJET- Wavelet based Galerkin Method for the Numerical Solution of One Dimens...
IRJET- Wavelet based Galerkin Method for the Numerical Solution of One Dimens...
 
Lesson 15: Exponential Growth and Decay
Lesson 15: Exponential Growth and DecayLesson 15: Exponential Growth and Decay
Lesson 15: Exponential Growth and Decay
 
Hk3114251433
Hk3114251433Hk3114251433
Hk3114251433
 
160280102051 c3 aem
160280102051 c3 aem160280102051 c3 aem
160280102051 c3 aem
 
ON COMPUTATIONS OF THPD MATRICES
ON COMPUTATIONS OF THPD MATRICESON COMPUTATIONS OF THPD MATRICES
ON COMPUTATIONS OF THPD MATRICES
 
Existence results for fractional q-differential equations with integral and m...
Existence results for fractional q-differential equations with integral and m...Existence results for fractional q-differential equations with integral and m...
Existence results for fractional q-differential equations with integral and m...
 
NTU_paper
NTU_paperNTU_paper
NTU_paper
 
Lesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric FunctionsLesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric Functions
 
Generalization of Tensor Factorization and Applications
Generalization of Tensor Factorization and ApplicationsGeneralization of Tensor Factorization and Applications
Generalization of Tensor Factorization and Applications
 
Conditional trees
Conditional treesConditional trees
Conditional trees
 

Viewers also liked

Proyecto TIC en un centro educativo
Proyecto TIC en un centro educativoProyecto TIC en un centro educativo
Proyecto TIC en un centro educativomaresgs08
 
Shadi k waza'if by muhammad ahsan raza qadri ghaza li
Shadi k waza'if by muhammad ahsan raza qadri ghaza liShadi k waza'if by muhammad ahsan raza qadri ghaza li
Shadi k waza'if by muhammad ahsan raza qadri ghaza liHaadi11
 
Proyecto escolar con integracion de redes sociales
Proyecto escolar con integracion de redes socialesProyecto escolar con integracion de redes sociales
Proyecto escolar con integracion de redes socialesSilvina Valiente
 
Catálago thipos 2013
Catálago thipos 2013Catálago thipos 2013
Catálago thipos 2013marciolobao
 
Trabajo individual segundo parcial
Trabajo individual segundo parcialTrabajo individual segundo parcial
Trabajo individual segundo parcialCecy Sámano Aguilar
 
δμητρα μαρια
δμητρα μαριαδμητρα μαρια
δμητρα μαριαstkarapy
 
Presentación splgou milagros tarco salcedo
Presentación splgou milagros tarco salcedoPresentación splgou milagros tarco salcedo
Presentación splgou milagros tarco salcedoMilagros Isabel Mits
 

Viewers also liked (20)

Av26303311
Av26303311Av26303311
Av26303311
 
Ai26214224
Ai26214224Ai26214224
Ai26214224
 
Bb26347353
Bb26347353Bb26347353
Bb26347353
 
Hr2615091514
Hr2615091514Hr2615091514
Hr2615091514
 
Dk26766771
Dk26766771Dk26766771
Dk26766771
 
A26001006
A26001006A26001006
A26001006
 
Ad26188191
Ad26188191Ad26188191
Ad26188191
 
X25119123
X25119123X25119123
X25119123
 
Na2522282231
Na2522282231Na2522282231
Na2522282231
 
Proyecto TIC en un centro educativo
Proyecto TIC en un centro educativoProyecto TIC en un centro educativo
Proyecto TIC en un centro educativo
 
Ley1014
Ley1014Ley1014
Ley1014
 
Shadi k waza'if by muhammad ahsan raza qadri ghaza li
Shadi k waza'if by muhammad ahsan raza qadri ghaza liShadi k waza'if by muhammad ahsan raza qadri ghaza li
Shadi k waza'if by muhammad ahsan raza qadri ghaza li
 
Proyecto escolar con integracion de redes sociales
Proyecto escolar con integracion de redes socialesProyecto escolar con integracion de redes sociales
Proyecto escolar con integracion de redes sociales
 
Pos jaga final
Pos jaga finalPos jaga final
Pos jaga final
 
Catálago thipos 2013
Catálago thipos 2013Catálago thipos 2013
Catálago thipos 2013
 
Trabajo individual segundo parcial
Trabajo individual segundo parcialTrabajo individual segundo parcial
Trabajo individual segundo parcial
 
ArtíCulo CientíFico
ArtíCulo CientíFicoArtíCulo CientíFico
ArtíCulo CientíFico
 
δμητρα μαρια
δμητρα μαριαδμητρα μαρια
δμητρα μαρια
 
Presentación splgou milagros tarco salcedo
Presentación splgou milagros tarco salcedoPresentación splgou milagros tarco salcedo
Presentación splgou milagros tarco salcedo
 
Wlan
WlanWlan
Wlan
 

Similar to Am26242246

A current perspectives of corrected operator splitting (os) for systems
A current perspectives of corrected operator splitting (os) for systemsA current perspectives of corrected operator splitting (os) for systems
A current perspectives of corrected operator splitting (os) for systemsAlexander Decker
 
The_variational_iteration_method_for_solving_linea.pdf
The_variational_iteration_method_for_solving_linea.pdfThe_variational_iteration_method_for_solving_linea.pdf
The_variational_iteration_method_for_solving_linea.pdfP Ramana
 
Paper id 21201486
Paper id 21201486Paper id 21201486
Paper id 21201486IJRAT
 
Numerical Solution of Diffusion Equation by Finite Difference Method
Numerical Solution of Diffusion Equation by Finite Difference MethodNumerical Solution of Diffusion Equation by Finite Difference Method
Numerical Solution of Diffusion Equation by Finite Difference Methodiosrjce
 
A semi analytic method for solving two-dimensional fractional dispersion equa...
A semi analytic method for solving two-dimensional fractional dispersion equa...A semi analytic method for solving two-dimensional fractional dispersion equa...
A semi analytic method for solving two-dimensional fractional dispersion equa...Alexander Decker
 
Solution of second order nonlinear singular value problems
Solution of second order nonlinear singular value problemsSolution of second order nonlinear singular value problems
Solution of second order nonlinear singular value problemsAlexander Decker
 
A Tau Approach for Solving Fractional Diffusion Equations using Legendre-Cheb...
A Tau Approach for Solving Fractional Diffusion Equations using Legendre-Cheb...A Tau Approach for Solving Fractional Diffusion Equations using Legendre-Cheb...
A Tau Approach for Solving Fractional Diffusion Equations using Legendre-Cheb...iosrjce
 
Some new exact Solutions for the nonlinear schrödinger equation
Some new exact Solutions for the nonlinear schrödinger equationSome new exact Solutions for the nonlinear schrödinger equation
Some new exact Solutions for the nonlinear schrödinger equationinventy
 
Decay Property for Solutions to Plate Type Equations with Variable Coefficients
Decay Property for Solutions to Plate Type Equations with Variable CoefficientsDecay Property for Solutions to Plate Type Equations with Variable Coefficients
Decay Property for Solutions to Plate Type Equations with Variable CoefficientsEditor IJCATR
 
11.[8 17]numerical solution of fuzzy hybrid differential equation by third or...
11.[8 17]numerical solution of fuzzy hybrid differential equation by third or...11.[8 17]numerical solution of fuzzy hybrid differential equation by third or...
11.[8 17]numerical solution of fuzzy hybrid differential equation by third or...Alexander Decker
 
11.numerical solution of fuzzy hybrid differential equation by third order ru...
11.numerical solution of fuzzy hybrid differential equation by third order ru...11.numerical solution of fuzzy hybrid differential equation by third order ru...
11.numerical solution of fuzzy hybrid differential equation by third order ru...Alexander Decker
 
Numerical solution of fuzzy hybrid differential equation by third order runge...
Numerical solution of fuzzy hybrid differential equation by third order runge...Numerical solution of fuzzy hybrid differential equation by third order runge...
Numerical solution of fuzzy hybrid differential equation by third order runge...Alexander Decker
 
29 15021 variational final version khalid hammood(edit)
29 15021 variational final version khalid hammood(edit)29 15021 variational final version khalid hammood(edit)
29 15021 variational final version khalid hammood(edit)nooriasukmaningtyas
 
Numerical_PDE_Paper
Numerical_PDE_PaperNumerical_PDE_Paper
Numerical_PDE_PaperWilliam Ruys
 
Elzaki transform homotopy perturbation method for
Elzaki transform homotopy perturbation method forElzaki transform homotopy perturbation method for
Elzaki transform homotopy perturbation method foreSAT Publishing House
 
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...inventionjournals
 
APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...
APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...
APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...mathsjournal
 
APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...
APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...
APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...mathsjournal
 
APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...
APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...
APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...mathsjournal
 

Similar to Am26242246 (20)

A current perspectives of corrected operator splitting (os) for systems
A current perspectives of corrected operator splitting (os) for systemsA current perspectives of corrected operator splitting (os) for systems
A current perspectives of corrected operator splitting (os) for systems
 
The_variational_iteration_method_for_solving_linea.pdf
The_variational_iteration_method_for_solving_linea.pdfThe_variational_iteration_method_for_solving_linea.pdf
The_variational_iteration_method_for_solving_linea.pdf
 
Paper id 21201486
Paper id 21201486Paper id 21201486
Paper id 21201486
 
Numerical Solution of Diffusion Equation by Finite Difference Method
Numerical Solution of Diffusion Equation by Finite Difference MethodNumerical Solution of Diffusion Equation by Finite Difference Method
Numerical Solution of Diffusion Equation by Finite Difference Method
 
A semi analytic method for solving two-dimensional fractional dispersion equa...
A semi analytic method for solving two-dimensional fractional dispersion equa...A semi analytic method for solving two-dimensional fractional dispersion equa...
A semi analytic method for solving two-dimensional fractional dispersion equa...
 
Solution of second order nonlinear singular value problems
Solution of second order nonlinear singular value problemsSolution of second order nonlinear singular value problems
Solution of second order nonlinear singular value problems
 
A Tau Approach for Solving Fractional Diffusion Equations using Legendre-Cheb...
A Tau Approach for Solving Fractional Diffusion Equations using Legendre-Cheb...A Tau Approach for Solving Fractional Diffusion Equations using Legendre-Cheb...
A Tau Approach for Solving Fractional Diffusion Equations using Legendre-Cheb...
 
Some new exact Solutions for the nonlinear schrödinger equation
Some new exact Solutions for the nonlinear schrödinger equationSome new exact Solutions for the nonlinear schrödinger equation
Some new exact Solutions for the nonlinear schrödinger equation
 
Decay Property for Solutions to Plate Type Equations with Variable Coefficients
Decay Property for Solutions to Plate Type Equations with Variable CoefficientsDecay Property for Solutions to Plate Type Equations with Variable Coefficients
Decay Property for Solutions to Plate Type Equations with Variable Coefficients
 
11.[8 17]numerical solution of fuzzy hybrid differential equation by third or...
11.[8 17]numerical solution of fuzzy hybrid differential equation by third or...11.[8 17]numerical solution of fuzzy hybrid differential equation by third or...
11.[8 17]numerical solution of fuzzy hybrid differential equation by third or...
 
11.numerical solution of fuzzy hybrid differential equation by third order ru...
11.numerical solution of fuzzy hybrid differential equation by third order ru...11.numerical solution of fuzzy hybrid differential equation by third order ru...
11.numerical solution of fuzzy hybrid differential equation by third order ru...
 
Numerical solution of fuzzy hybrid differential equation by third order runge...
Numerical solution of fuzzy hybrid differential equation by third order runge...Numerical solution of fuzzy hybrid differential equation by third order runge...
Numerical solution of fuzzy hybrid differential equation by third order runge...
 
29 15021 variational final version khalid hammood(edit)
29 15021 variational final version khalid hammood(edit)29 15021 variational final version khalid hammood(edit)
29 15021 variational final version khalid hammood(edit)
 
Numerical_PDE_Paper
Numerical_PDE_PaperNumerical_PDE_Paper
Numerical_PDE_Paper
 
Elzaki transform homotopy perturbation method for
Elzaki transform homotopy perturbation method forElzaki transform homotopy perturbation method for
Elzaki transform homotopy perturbation method for
 
Presentation03 ss
Presentation03 ssPresentation03 ss
Presentation03 ss
 
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
 
APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...
APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...
APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...
 
APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...
APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...
APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...
 
APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...
APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...
APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...
 

Am26242246

  • 1. P. R. Mistry, V. H. Pradhan / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 2, Issue 6, November- December 2012, pp.242-246 Analytic Solution Of Burger’s Equations By Variational Iteration Method P. R. Mistry* and V. H. Pradhan** * (Department of Applied Mathematics & Humanities, S.V.N.I.T., Surat-395007, India) ** (Departments of Applied Mathematics & Humanities, S.V.N.I.T., Surat-395007, India) Abstract By means of variational iteration method the 2 VARIATIONAL ITERATION METHOD: solutions of (1+1), (1+2) and (1+3) dimensional Consider the following differential equation: Burger equations are exactly obtained. In this Lu  Nu  h ( x, t ) (2.1) paper, He's variational iteration method is where L is a linear operator, N a nonlinear introduced to overcome the difficulty arising in calculating Adomian polynomials. operator, and an h ( x, t ) is the source inhomogeneous term. The VIM was proposed by Key words: Burger’s equation, Nonlinear time “He”, where a correctional functional for equation dependent partial differential equations, Variational (1.4.1) can be written as iteration method and Lagrange multiplier. un 1 (t )  un (t )  t , n  0 (2.2) 1 Introduction We often come with non linear partial   ( Lu ( )  Nu ( )  h ( )) d 0 n  n differential equations obtained through Where  is a general Lagrange multiplier mathematical models of scientific phenomena. which can be identified optimally via the variational There are some methods to obtain approximate theory. The subscript n indicates the n th solution of this kind of equation. Some of them are approximation and  u n is considered as a restricted numerical methods, homotopy analysis, Exp- variation, i.e.  un  0 . It is clear that the  function method, and linearization of the equation successive approximations un , n  0 can be [1, 6, 7]. In 1999, the variational iteration method established by determining  , so we first was developed by mathematician “He”. This method determine the Lagrange multiplier  that will be is used for solving linear and non linear differential identified optimally via integration by parts. The equations. The method introduces a reliable and successive approximation un ( x, t ), n  0 of the efficient process for a wide variety of scientific and solution u( x, t ) will be readily obtained using the engineering applications [1, 2, 4, 5,]. It is based on Lagrange multiplier obtained and by using any Lagrange multiplier and it has the merits of selective function u 0 . The initial values u( x,0) simplicity and easy execution. This method avoids and ut ( x,0) are usually used for selecting the linearization of the problem. zeroth approximation u 0 . With  determined, then In this paper exact solution of (1+1), (1+2) several approximation un ( x, t ), n  0 , follow and (1+3) dimensional Burger equation [3] has been immediately. Consequently the exact solution may obtained by variational iteration method. The be obtained by using mentioned problem has been solved by u  lim un (2.3) n N.Taghizadeh etc. [3] by Homotopy Perturbation Method and Reduced Differential Transformation 3. APPLICATION OF VIM FOR BURGER’S EQUATION: Method here in the present paper we have solved the 3.1 (1+1)-Dimensional Burgers equation same problem by variational iteration mehod.. u  u    2u   u     2   0 (3.1.1) t  x   x  242 | P a g e
  • 2. P. R. Mistry, V. H. Pradhan / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 2, Issue 6, November- December 2012, pp.242-246 u4  {{{{x(1  t  t 2 2  t 3 3  t 4 4 I.C.: u  x,0  x (3.1.2) 13t 5 5 2t 6 6 29t 7 7 71t 8 8     Now following the variational iteration 15 3 63 252 method given in the above section we get the 86t  9 9 22t  10 10 5t  11 11 t12 12 following functional     567 315 189 126 un 1 ( x, t )  un ( x, t )  t  13 13 t  14 14 t  15 15    )}}}} (3.1.9)  un   2u   567 3969 59535  u  t (3.1.3)  0  t    un n  x      2n   d  x   u5  {{{{{x(1  t  t 2 2  t 3 3  t 4 4 43t 6 6 13t 7 7 943t 8 8 t 5 5     Stationary conditions can be obtained as follows: 45 15 1260 3497t 9 9 27523t10 10 1477t11 11  '    0   5670 56700 4050 (3.1.4) 1     17779t  12 12 13141t  13 13 1019t14 14  t    68040 73710 8820 The Lagrange multiplier can therefore be 63283t  15 15 43363t  16 16 1080013t17 17 simply identified as   1 , and substituting this    893025 1058400 48580560 value of Lagrange multiplier into the functional (3.1.3) gives the following iteration equation. 2588t  18 18 162179t  19 19 16511t 20 20    229635 30541455 7144200 un 1 ( x, t )  un ( x, t )  207509t  21 21 557t 22 22 2447t 23 23     t  un  u    2 un   (3.1.5) 225042300 1666980 22504230   t    un xn 0    2   x   d  16927t 24 24 5309t 25 25 t 26 26   540101520 675126900 595350 As stated before, we can select Initial 2t 27 27 13t 28 28 t 29 29 condition given in the equation (3.1.2) and using    this selection in (3.1.5) we obtain the following 6751269 315059220 236294415 successive approximations: t 30 30 t 31 31   )}}}}}(3.1.10) 3544416225 109876902975 u1  {x  tx } (3.1.6) 1 u  x, t   u1  u2  u3  .... (3.1.11) u2  {{x   (tx  t 2 x  t 3 x 2 )}} (3.1.7) 3 x u  x, t   (3.1.12) 1 u3  {{{x  tx  t 2 x 2  t 3 x 3 1  t 3 3.2 (2+1)-Dimensional Burger’s equation 1 3 2  (tx  t 2 x  t x )  3 u  u u  (3.1.8) 2 4 3  u  u    (tx  t x  t x  t x 2 3 2 t  x y  3 (3.2.1)   2u  2u  1 1 1  t 5 x 4  t 6 x 5  t 7 x 6 )}}}  2  2 0 3 9 63  x y  I.C.: u  x, y,0  x  y (3.2.2) Now following the variational iteration method, we get the following functional 243 | P a g e
  • 3. P. R. Mistry, V. H. Pradhan / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 2, Issue 6, November- December 2012, pp.242-246 un 1 ( x, t )  un ( x, t )  u4  {{{{x  y  2tx  un  u u    2ty  4t 2 x 2      un n  un n   t  t  x y   (3.2.3) 4t 2 y 2  8t 3 x 3      2u  2u   d  8t 3 y 3  16t 4 x 4 0     2n  2n    x y       16t 4 y 4  416 5 5 t x 15 Stationary conditions can be obtained as follows: 416 5 5 128 6 6  t y  t x  '    0 15 3 128 6 6 3712 7 7 1     (3.2.4)  t y  t x  t 3 63 3712 7 7 4544 8 8 The Lagrange multiplier can therefore be  t y  t x simply identified as   1 , and substituting this 63 63 value of Lagrange multiplier into the functional 4544 8 8 44032 9 9 (3.2.3) gives the following iteration equation.  t y  t x 63 567 un 1 ( x, t )  un ( x, t )  44032 9 9 22528 10 10  t y  t x 567 315  un  u u       un n  un n    22528 10 10 10240 11 11 t y  t x  t  x y   t (3.2.5)     2u  2u   d 315 189 10240 11 11 2048 12 12 0     2n  2n    t y  t x  x y      189 63 2048 12 12 8192 13 13 As stated before, we can select Initial  t y  t x condition given in the equation (3.2.2) and using 63 567 this selection in (3.2.5) we obtain the following 8192 13 13 16384t14 x 14 successive approximations:  t y  567 3969 u1  {x  y  2t ( x  y ) } (3.2.6) 16384t y 14 14 32768t15 x 15   u2  {{x  y  2tx  2ty  3969 59535 8 32768t y 15 15 4t 2 x 2  4t 2 y 2  t 3 x 3 (3.2.7)  }}}} (3.2.9) 3 59535 8  t 3 y 3}} 3 u3  {{{x  y  2tx  2ty  4t 2 x 2  4t 2 y 2  8t 3 x 3  8t 3 y 3 32 32 32  t 4 x 4  t 4 y 4  t 5 x 5 (3.2.8) 3 3 3 32 64 64  t 5 y 5  t 6 x 6  t 6 y 6 3 9 9 128 7 7 128 7 7  t x  t y }}} 63 63 244 | P a g e
  • 4. P. R. Mistry, V. H. Pradhan / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 2, Issue 6, November- December 2012, pp.242-246 u5  {{{{{x  y  2tx  2ty un 1 ( x, t )  un ( x, t )  4t 2 x 2  4t 2 y 2  8t 3 x 3  un  u u u       un n  un n  un n   8t y  16t x  16t y 3 3 4 4 4 4 t t  x y z    (3.3.3) 2752 6 6     2u  2u  2u   d 32t 5 x 5  32t 5 y 5  t x 0    2  2  2  n n n  45  x y z      2752 6 6 1664 7 7  t y  t x 45 15 Stationary conditions can be obtained as follows: 1664 7 7 60352 8 8  t y  t x  '    0 15 315 (3.3.4) 60352 8 8 895232t 9 x 9 1      t  t y  315 2835 The Lagrange multiplier can therefore be 895232t y 9 9 7045888t10 x 10 simply identified as   1 , and substituting this   2835 14175 value of Lagrange multiplier into the functional (3.3.3) gives the following iteration equation. 7045888t y 10 10 1512448t11 x 11   14175 2025 un 1 ( x, t )  un ( x, t )  1512448t y 11 11 9102848t12 x 12  un    u u u   2025 8505     un n  un n  un n    t  x y z   t (3.3.5) 9102848t y 53825536t13 x 13     2u  2u  2u   d 12 12   8505 36855 0    2  2  2  n n n   x y z   53825536t y 13 13 4173824t14 x 14     36855 2205 As stated before, we can select Initial condition 4173824t y 14 14 2073657344t15 x 15 given in the equation (3.3.2) and using this selection   in (3.3.5) we obtain the following successive 2205 893025 approximations: 2073657344t y 15 15  893025 u1  {x  y  z  3t ( x  y  z ) } (3.3.6) 88807424t16 x 16 u2  {{x  y  z  3tx  3ty   .......}}}}} (3.2.10) 33075  3tz  9t 2 x 2  9t 2 y 2 (3.3.7)  9t 2 z 2  9t 3 x 3 u  x, t   u1  u2  u3  .... (3.2.11) x y  9t 3 y 3  9t 3 z 3}} u  x, y , t   (3.2.12) u3  {{{x  y  z  3tx  3ty 1  2 t 3tz  9t 2 x 2  9t 2 y 2 3.3 (3+1)-Dimensional Burger’s equation u  u u u  9t 2 z 2  27t 3 x 3  27t 3 y 3  u  u  u  t  x y z  27t 3 z 3  54t 4 x 4  54t 4 y 4 (3.3.1)   2u  2u  2u  54t 4 z 4  81t 5 x 5  81t 5 y 5 (3.3.8)   2  2  2   0  x y z  81t z  81t x  81t y 5 5 6 6 6 6 I.C.: u  x, y, z,0  x  yz (3.3.2) 81t 6 z 6  243 7 7 243 7 7 t x  t y Now following the variational iteration method, we 7 7 get the following functional 243 7 7  t z }}} 7 245 | P a g e
  • 5. P. R. Mistry, V. H. Pradhan / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 2, Issue 6, November- December 2012, pp.242-246 u4  {{{{x  y  z  3tx  3ty iteration method is a powerful mathematical tool to solving Burger’s equations. In our work, we use the  3tz  9t 2 x 2  9t 2 y 2  9t 2 z 2 Mathematica Package to calculate the series obtained from the variational iteration method.  27t 3 x 3  27t 3 y 3  27t 3 z 3  81t 4 x 4  81t 4 y 4  81t 4 z 4 References 1. Sadighi A and Ganji D, Exact solution of 1053 5 5 1053 5 5  t x  t y nonlinear diffusion equations by variational 5 5 iteration method, Commuters and Mathematics with Applications, 54, (2007), 1053 5 5  t z  486t 6 x 6 pp. 1112-1121. 5 2. He.J.H. Variational iteration method -- a 1053 5 5 kind of non-linear analytical technique:  t z  486t 6 x 6 some examples, Internat. J. Nonlinear 5 Mech. 34, (1999).,pp. 699–708 486t 6 y 6  486t 6 z 6 3. N.Taghizadeh, M.Akbari and A.Ghelichzadeh, Exact Solution of Burgers 7047 7 7 7047 7 7  t x  t y Equations by Homotopy Perturbation 7 7 Method and Reduced Differential Transformation Method, Australian Journal 7047 7 7 51759 8 8  t z  t x of Basic and Applied Sciences, 5(5): 7 28 (2011),pp. 580-589,  ...........}}}} (3.3.9) 4. Salehpoor E. and Jafari H., Variational iteration method: A tools for solving partial u  x, y, z, t   u1  u2  u3  ... (3.3.10) differential equations, The journal of Mathematics and Computer Science, 2, x yz u  x, y , z , t   (3.3.11) (2011)pp. 388-393. 1  3 t 5. Wazwaz A. M.., The variational iteration method: A Powerful scheme for handling 3.4 (n+1)-Dimensional Burger’s equation linear and nonlinear diffusion equations. Computer and Mathematics with u  u u u u  Applications 54, (2007) pp.933-939.  u u u  ......  u  6. M.A. Abdou and A.A. Soliman, t  x1 x2 x3 xn  Variational iteration method for solving Burger’s and coupled Burger’s equations   2u  2u  2u  2u  Journal of Computational and Applied    2  2  2  ....  0 Mathematics 181 (2005), pp. 245 – 251.  x1 x2 x3 xn 2  7. Junfeng Lu, Variational iteration method (3.4.1) for solving a nonlinear system of second- u  x1 , x2 , x3 ,.........., xn , 0  order boundary value problems, Computers I.C.: (3.4.2) and Mathematics with Applications 54  x1  x2  ......  xn (2007), pp.1133–1138. Similarly, we apply VIM on the equation (3.4.1) we get the following exact solution. u  x1 , x2 , x3 ,.............., xn , t    x1  x2  x3  x4  ............  xn  (3.4.3) 1  n t 4. Conclusion In this paper, the variational iteration method has been successfully applied to finding the solution of (1+1), (1+2) and (1+3) dimensional Burger’s equations. The solution obtained by the variational iteration method is an infinite power series for appropriate initial condition, which can, in turn, be expressed in a closed form, the exact solution. The results show that the variational 246 | P a g e