The impact of cash and food transfers: Evidence from a randomized intervention in Niger

1,298 views

Published on

Presentation by John Hoddinott at the event, “2013 AAEA & CAES Joint Annual Meeting” which took place on August 4-6, 2013 in Washington, DC. It offers AAEA members, CAES members, and other applied economists a chance to interact and learn over the course of the three day meeting.

Published in: Education, Technology, Business
0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
1,298
On SlideShare
0
From Embeds
0
Number of Embeds
60
Actions
Shares
0
Downloads
22
Comments
0
Likes
2
Embeds 0
No embeds

No notes for slide

The impact of cash and food transfers: Evidence from a randomized intervention in Niger

  1. 1. The impact of cash and food transfers: Evidence from a randomized intervention in Niger John Hoddinott – International Food Policy Research Institute Susanna Sandström – Abo Akademi University Joanna Upton – Cornell University (Presenter) AAEA and CAES Joint Annual Meeting Washington, D.C. August 6, 2013
  2. 2. Literature & Research Questions • Food versus Cash transfers • Timeliness advantages, and in some cases cost (Gentilini 2007;  Lentz et al. forthcoming).  • Key advantage of cash is that it provides recipients with choice • Several contributions • Randomized design • Important setting for understanding impacts of cash transfers • Geography (land‐locked), poverty, food insecurity • Functioning food markets • Government and agency movement toward cash transfers • Food security analysis
  3. 3. Context • Niger, and the intervention region • Fifth poorest in per capita GNI; 186/187 on the HDI; 93% suffering  from deprivation  • Food insecure (availability, access, and use); severe food crises in  parts of country in 2005‐2006, 2010, and again in 2012 • Zinder; surplus production region, yet often hardest hit by food  crises • The Project (2011) • Large‐scale cash/food pilot implemented by the World Food  Programme • Cash/food for work (April‐June), followed by unconditional  transfers (July‐Sept) • 126 villages in 12 departments of Mirriah, Zinder • Food basket, and cash transfer (of equivalent value)
  4. 4. Context Estimated food security conditions, 2nd Quarter (April‐June) 2011  Source: FEWS.net
  5. 5. Research Design • Randomization at worksite level (52 worksites) • Two survey rounds: • Following public works, all households in all evaluated villages (5,668  households) • Follow‐up with unconditional transfer recipients (2,268 households) Mirriah District            (52 worksites) Agricultural Zone  (29 sites) RANDOMIZE Cash for work  (15 sites, 1747 HHs) Cash transfers  (15 sites, 686 HHs) Food for work  (14 sites, 1658 HHs) Food transfers  (14 sites, 635 HHs) Agro‐Pastoral Zone  (23 sites) RANDOMIZE Cash for work (12 sites, 1202 HHs) Cash transfers  (12 sites, 493 HHs) Food for work  (11 sites, 1061 HHs) Food Transfers  (11 sites, 395 HHs)
  6. 6. Data & Balance • Survey coverage • ALL households: Composition, ethnicity/status, credits prior to  transfer period, lodging, assets, livestock, production, public  works participation • Additionally, for subset and follow‐up: Credits and transfers  during the intervention, food consumption and diversity, coping  strategies • Inter‐seasonal component  • Balance and Quality • At worksite level, balances on all observables • Followed up with 2,209 of 2,268 chosen for unconditional  transfers (attrition of 2.6%) you had them booked for a tentative PS by  Shahid
  7. 7. Outcome Variable Definitions • Foods and food groups consumed • How many occasions in the past 7 days • Household Dietary Diversity Index (HDDI) • Sum of different foods consumed (1 to 25) • Household Dietary Diversity Score (HDDS) • Sum of different food groups consumed (1 to 11) • Food Consumption Score (FCS) • Weighted sum of food groups consumed, based on dietary quality • Categories: Poor (≤ 21), Borderline (> 21, ≤ 35), Acceptable (> 35) • Coping Strategies Index (CSI) • Index based on reliance on a diverse set of coping strategies • Food and Non‐Food Expenditures
  8. 8. Method • A single‐difference estimator of the form: , , 1 • Lack of baseline => cannot estimate a dif‐in‐dif; however, dif‐ in‐dif only preferable when autocorrelation of outcomes is  high (which it is not in this case)
  9. 9. Results: Food Diversity Food Security Outcomes (Table 4) July October Dietary Diversity Index (DDI) 0.356* 0.544** (0.207) (0.229) Food Consumption Score (FCS) 3.923*** 4.647*** (1.424) (1.139) “Acceptable” FCS (WFP cut‐off) 0.109** 0.121*** (0.043) (0.041) Number of Households 2256 2187 Standard errors (clustered at worksite level) in parentheses *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively Controls included (but not shown):  age, sex, education, and ethnicity of household head; household  size; asset score; whether in pastoral zone; village access to market, health clinic, and mobile phone  coverage; distance to the main road; livestock prices; change in millet price during period; millet price  at end of period; commune‐level fixed effects.
  10. 10. Results: Coping Strategies CSI and Selected Coping Strategies (Table 7) July October Coping Strategies Index ‐3.708* ‐3.168*** (1.916) (0.411) Relied on less‐preferred foods ‐0.039* 0.024 (0.022) (0.020) Borrowed food from relatives or neighbors ‐0.082*** ‐0.022 (0.024) (0.021) Had to cancel debt repayments ‐0.038** 0.057*** (0.017) (0.009) Reduced number of meals per day ‐0.025 ‐0.036** (0.024) (0.015) Number of households 2256 2187 Notes: see Table 4 (previous slide)
  11. 11. Results: Food Consumption and Expenditures Food Groups (Table 5) Were items consumed Number of days consumed July October July October Cereals ‐‐ ‐‐ 0.093* 0.109*** (0.051) (0.035) Pulses 0.064** 0.021 0.638** 0.820*** (0.032) (0.013) (0.314) (0.168) Oils 0.106*** 0.042** 0.959*** 1.010*** (0.033) (0.017) (0.258) (0.186) Food Purchases (Table 6) Made purchase Expenditure (CFA) July October July October Bulk Grain purchases ‐0.273*** ‐0.400*** ‐14289*** ‐25015*** (0.020) (0.034) (1570) (432) Consumption/purchase estimated using a Probit model; number of days using a Poisson; expenditures  using a Tobit. Results reported are marginal effects. Additional notes in Table 4 (above).
  12. 12. Results: Non‐Food Expenditures Non‐Food Purchases (Table 6) Made purchase Expenditure (CFA monthly) July October July October Total non‐food expenditure ‐‐ ‐‐ 1874.7*** ‐592.0 (502) (1010.7) Construction, repair, housing ‐0.034* 0.002 ‐2870.8* 495.2 (0.021) (0.016) (1686.3) (403.9) Wages, animal care, seeds ‐0.105*** ‐0.090*** ‐1779** ‐5819** (0.035) (0.029) (816.2) (2604) Purchase estimated using a Probit model; expenditures using a Tobit. Results reported are marginal  effects. Additional notes in Table 4 (above).
  13. 13. Summary • Households who received the food basket experienced larger  positive impacts on measures of food security, including  dietary diversity and coping strategies • Cash recipients bought bulk grains • Also spent more on household repairs in July, and more on farm  inputs/livestock care in both periods • Pertinence of context • Response to (predictable) future price variation • Extreme poverty contributing to the lack of typical ‘diversity’ in  diet • Much remaining to explore…
  14. 14. Joanna Upton jbu3@cornell.edu Corresponding Author: John Hoddinott 2033 K Street N.W., Washington, D.C. 20006 J.Hoddinott@cgiar.org

×