Session 1.4 Cassava Breeding Potential for Bioethanol by Becerra Lopez Lavalle

28,438 views

Published on

Published in: Education, Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
28,438
On SlideShare
0
From Embeds
0
Number of Embeds
5
Actions
Shares
0
Downloads
38
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Session 1.4 Cassava Breeding Potential for Bioethanol by Becerra Lopez Lavalle

  1. 1.
  2. 2. Cassava breeding potential for bioethanol<br />Becerra López-Lavalle, L.A. , Dufour, D., Sánchez, T. and H. Ceballos<br />
  3. 3. Outline<br /><ul><li>Introduction
  4. 4. High, stable and reliableproductivity
  5. 5. Noveltraits
  6. 6. Processingmethods X rootqualityinteractions
  7. 7. Perspectives</li></li></ul><li>Outline<br /><ul><li>Introduction
  8. 8. High, stable and reliableproductivity
  9. 9. Noveltraits
  10. 10. Processingmethods X rootqualityinteractions
  11. 11. Perspectives</li></li></ul><li>Cassava origin<br />Flooded land<br />Low Soil Fertility<br />Degraded Soils<br />Slopped Land<br />
  12. 12. Cassava modern production<br />Sub-humid environment<br />Acid –Soil environment<br />19’000,000 hectares<br />Near Hanoi, Vietnam<br />Guan-Xi Province, China<br />
  13. 13. Cassava modern production<br />Sub-humid environment<br />Acid –Soil environment<br />19’000,000 hectares<br />233,000 Tonnes<br />Near Hanoi, Vietnam<br />Guan-Xi Province, China<br />
  14. 14. Main uses of Cassava<br />Fresh - boiled<br />Farinha - Gari<br />Human consumption<br />Fufu<br />Cassava leaves<br />
  15. 15. Main uses of Cassava<br />Dry chips for animal feed<br />Chicken factory<br />Animal feedstock<br />Near Hanoi, Vietnam<br />Pressed cake <br />
  16. 16. Main uses of Cassava<br />Bio-Ethanol<br />Starch<br />Industrial use of Cassava<br />Goren-Krupuk<br />Fried-Chips<br />
  17. 17. Tropical/Sub-tropical crop<br />Main cassava production regions in the world<br />
  18. 18. Outline<br /><ul><li>Introduction
  19. 19. High, stable and reliableproductivity
  20. 20. Noveltraits
  21. 21. Processingmethods X rootqualityinteractions
  22. 22. Perspectives</li></li></ul><li>Crop Potential<br />South-China 5<br />Breeding successfully increased fresh-root (FR) productivity& dry-matter (DM) content. We now need STABLE-DM contents<br />SM 1433-4<br />84 t/ha FR in a 9.5 ha commercial field<br />(~25 t/ha DM)<br />
  23. 23. Crop Potential<br />The case of “watery” roots for ethanol<br />
  24. 24. Crop Potential<br />The case of “watery” roots for ethanol<br />High Dry Matter content does not seems critical to ethanol production <br />
  25. 25. Outline<br /><ul><li>Introduction
  26. 26. High, stable and reliableproductivity
  27. 27. Noveltraits
  28. 28. Processingmethods X rootqualityinteractions
  29. 29. Perspectives</li></li></ul><li>Cassava “Novel” traits<br />Amylose-free (“waxy”) starch mutation<br /><ul><li>Amylose is difficult to degrade
  30. 30. Amylose-free starch should cost less to convert into ethanol</li></li></ul><li>Cassava “Novel” traits<br />
  31. 31. Conventional processing<br />GSHE processing<br />Less amylose = more ethanol<br />
  32. 32. Less amylose =<br />more ethanol<br />
  33. 33. Cassava “Novel” traits<br />Fermentability: assess their potential in bio-ethanol, bio-plastics, sweeteners <br />
  34. 34. Cassava starch fermentation: with and without starch<br />Total ethanol <br />(mL/Kg of starch)<br />4 1/3 days<br />
  35. 35. Small granule/high amylose<br />Normal Starch<br />Small granule Starch<br />
  36. 36. Small granule/high amylose<br />Normal Starch<br />Small granule Starch<br /><ul><li>A small granule and a rough surface facilitate the action of enzymes (less consumption of enzymes, lower costs of conversion).
  37. 37. But higher amylose content would increase costs….</li></li></ul><li>Small granule/high amylose<br />RVA Amylogram<br />
  38. 38. Starch-less mutation<br />Source:<br />L. Carvalho<br />EMBRAPA<br />Brazil<br />
  39. 39. Outline<br /><ul><li>Introduction
  40. 40. High, stable and reliableproductivity
  41. 41. Noveltraits
  42. 42. Processingmethods X rootqualityinteractions
  43. 43. Perspectives</li></li></ul><li>Bio-ethanol production<br />Ethanol factory in Thai Nguan near Khon Kaen (Thailand)<br />
  44. 44. Bio-ethanol production<br />Ethanol factory in Thai Nguan near Khon Kaen (Thailand)<br />5.27 kg of fresh root produce one liter of ethanol<br />1.4 – 1.5 bath / kg fresh root<br />25 bath / lt of ethanol produced<br />
  45. 45. Boiler<br />Liquefaction & saccharification<br />Ethanol<br />Maize or Cassava<br />Starch degradation<br />Distillation &<br />dehydration<br />Sugarcane juices<br />Sugarcane<br />Fermentation<br />Ethanol from corn or cassava is more expensive because starch need to be degraded to the equivalent of sugar cane juices<br />
  46. 46. Sorce of<br />satrch<br />Thermo-stable<br />Alpha-amylase<br />(Liquefacction)<br />Yeasts<br />Grinding<br />Jet cooker<br />>100 °C <br />(5-8’) <br />Saccharification<br />60 °C (8-10 horas) <br />Fermentation<br />Storage<br />tank<br />Distillation &<br />dehydration<br />Slurry tank<br />Secondary<br />Liquefaction<br />(95 °C – 90’)<br />Solids<br />Glucoamylase<br />(Saccharification)<br />
  47. 47. Sorce of<br />satrch<br />Thermo-stable<br />Alpha-amylase<br />(Liquefacction)<br />Yeasts<br />Grinding<br />Jet cooker<br />>100 °C <br />(5-8’) <br />Saccharification<br />60 °C (8-10 horas) <br />Fermentation<br />Storage<br />tank<br />Distillation &<br />dehydration<br />Slurry tank<br />Secondary<br />Liquefaction<br />(95 °C – 90’)<br />New enzymes<br />Solids<br />Liquefaction + saccharification<br />Glucoamylase<br />(Saccharification)<br />
  48. 48. Sorce of<br />satrch<br />Yeasts<br />Grinding<br />Saccharification<br />60 °C (8-10 horas) <br />Fermentation<br />Storage<br />tank<br />Distillation &<br />dehydration<br />Slurry tank<br />New enzymes<br />+ yeasts<br />New enzymes<br />Solids<br />Liquefaction + saccharification<br />Liquefaction + saccharification<br />+ fermentation<br />
  49. 49. Storage<br />tank<br />Distillation &<br />dehydration<br />Solids<br />
  50. 50. Medium throughput fermenters<br />
  51. 51. Digestion rate of different cassava starches <br />(1.0 ml of pacreatic α-amilase) <br />pH 6.9 at 37°C<br />~80%<br />~30%<br />
  52. 52. Digestion rate of different cassava starches <br />(0.5 ml of StargenTM 2) <br />pH 4.0 at 37°C<br />~60%<br />~30%<br />
  53. 53. Root processing vs. quality<br />Starch degrading enzymes and yeast are being improved.<br />The process to convert starch into ethanol constantlychanges.<br />As in maize, there are genetic differences in cassava for ethanol production (small starch granule).<br />We are in a unique position to analyze the best germplasm – processing method to maximize economic benefit and reduce negative impact on the environment.<br />What is the potential of “sugary” cassava?<br />
  54. 54. Outline<br /><ul><li>Introduction
  55. 55. High, stable and reliableproductivity
  56. 56. Noveltraits
  57. 57. Processingmethods X rootqualityinteractions
  58. 58. Perspectives</li></li></ul><li>Cassava Bio-ethanol perspective<br /><ul><li>Cassava is a competitive raw material for bio-ethanol production in Asia (Thailand, China, Vietnam, Indonesia?, Australia?)
  59. 59. A large % of the ethanol production cost is constitute by the enzyme and yeast.
  60. 60. Advances in microbiology and enzymologycan significantly reduce ethanol production cost from starches</li></li></ul><li>Cassava Bio-ethanol prespective<br /><ul><li>There are clones with low dry matter content but maximum productivity per hectare that can now be used in ethanol production
  61. 61. Different mutants could reduce costs of conversion from root to ethanol (including “sugary”?)</li></li></ul><li>Energy crops: farms of 1-100 ha <br />Ethanol (99,5%)<br />Cassava<br />Banana<br />Coffee residues<br />Sweet potato<br />Sweet sorghum<br />Sugar cane<br />Small rural communities<br />Central Plant (dehydration)<br />Micro-plants<br />1.000 – 2.000 lt/day5 – 10 t crop/day<br />< – 1 ha crop/day<br />Ethanol (50%)<br />Transport<br />
  62. 62. Cassava Bio-ethanol perspective<br /><ul><li>For ethanol production a key issue is the continuoussupply of feedstock all year round.
  63. 63. Processing of fresh roots (low dry matter?) at harvest time and dried chips during off-season is one potential alternative.</li></li></ul><li>Cassava Bio-ethanol perspective<br /><ul><li>Combining feedstock from different crops. For instance, cassava/sweet-sorghum has proved advantageous.
  64. 64. We need to further analyze the by-products and their potential use for animal feeding.</li></li></ul><li>Thank you<br />

×