IEA - Produção de etanol celulósico empregando enzimas fúngicas

1,092
-1

Published on

Evento organizado pelo Instituto de Estudos Avançados Polo Ribeirão Preto - USP.
Tema: Produção de etanol celulósico empregando enzimas fúngicas.
Palestra do Prof. Dr. João Atílio Jorge
Realizada em 10/03/2011.

Published in: Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
1,092
On Slideshare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
14
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

IEA - Produção de etanol celulósico empregando enzimas fúngicas

  1. 2. INTRODUÇÃO
  2. 3. HISTÓRICO DA UTILIZAÇÃO DE FUNGOS PARA A PRODUÇÃO DE CELULASES
  3. 4. SEGUNDA GUERRA MUNDIAL GENERAL DORIOT (USA) FICOU ESPANTADO COM A QUANTIDADE DE MATERIAL BÉLICO E DE UNIFORMES QUE ERAM CORROÍDOS NAS ILHAS DO PACÍFICO
  4. 5. <ul><li>DORIOT CONSEGUIU UM PROGRAMA PARA DETERMINAR </li></ul><ul><li>NATUREZA DA CORROÇÃO </li></ul><ul><li>ORGANISMO (S) </li></ul><ul><li>MÉTODO QUE ERA USADO </li></ul><ul><li>PREVENÇÃO E CONTROLE SEM USO DE INSETICIDA </li></ul>
  5. 6. FORAM ISOLADOS MAIS DE 14.000 FUNGOS E O TRICHODERMA FOI ISOLADO NA NOVA GUINÉ
  6. 8. General Doriot Prof. Willian Weston (Havard) Lawrence White (Micologista) -Identificação Ralf Siu -Bioquímica Obter glicose De algodão (1946) ENERGIA
  7. 9. COMEÇOU O QUE PODERÍAMOS CHAMAR DA SAGA DO Trichoderma viride
  8. 10. O PROJETO DUROU 31 ANOS (1945 a 1976) FORAM PUBLICADOS MAIS DE 100 ARTIGOS CIENTÍFICOS E TRÊS SIMPÓSIOS FORAM REALIZADOS
  9. 11. Elwyn T. Reese: .... Thirty-one years is a long time! The initial reason was that we were living In the right era. Basic research was highly popular and money was readily available. Still most projects lose appeal to administrators after four or five years. Managers prefer to have something “new” to talk about.
  10. 12. Symposium : “Enzymatic conversion of cellulosic materials: Technology and applications” “ under the auspecies of Advisory Board on Military Personnel Suplies; and U.S. Army Natick Research and Development Command”
  11. 13. Buscaram entre os milhares de microrganismos isolados Os melhores celulolíticos
  12. 14. CELOTE- TRAOSE
  13. 15. 1975 – PRESIDENTE ERNESTO GEISEL ATRAVÉS DO DECRETO EXECUTIVO (76595) CRIA O PRÓ-ALCOOL
  14. 16. OBJETIVO : CRIAR INCENTIVOS PARA A PRODUÇÃO DE ETANOL A PARTIR DA CANA DE AÇUCAR, VISANDO DIMINUIR A DEPENDENCIA DE IMPORTAÇÃO DE PETROLEO
  15. 17. HOUVE DOIS ESTÁGIOS DE IMPLANTAÇÃO DO PRÓ-ALCOOL <ul><li>Melhoria ou criação </li></ul><ul><li>de novas usinas e o </li></ul><ul><li>envolvimento das </li></ul><ul><li>industriais automotivas </li></ul><ul><li>no programa (gasoalcool) </li></ul>2) Segundo estágio (1979) com a produção de carros movidos com álcool (pico em 1985)
  16. 19. There are, after all, nearly a billion passenger cars throughout the world.
  17. 20. HÁ UMA INDICAÇÃO QUE O MERCADO INTERNO DO ETANOL É BEM CONSOLIDADO E TODO O ALCOOL PRODUZIDO TEM SEU COMÉRCIO GARANTIDO
  18. 21. LEIS, REGULAMENTOS E A OPNIÃO PÚBLICA NA MAIORIA DOS PAÍSES FORÇAM PARA QUE HAJA UMA TROCA DE 10% DA ENERGIA CONSUMIDA PROVENIENTE DE PETROLEO PARA ENERGIA RENOVÁVEL
  19. 23. (Ulman, M.A. et al., 2010)
  20. 27. celobiose Glucose
  21. 28. xylose
  22. 29. LIGNINA
  23. 32. DOIS TIPOS DE METODOLOGIA PODEM SER USADAS PARA DESCONSTRUIR MATERIAIS LIGNOCELULÓSICOS ÁCIDO EXPLOSÃO A VAPOR
  24. 33. ÁCIDO 127ºC 30 min Clorídrico ou sulfúrico EXPLOSÃO A VAPOR Alta temperatura e Pressão (8min) Rápida descompressão
  25. 34. Os dois tratamento envolvem o desarranjos das Fibras dos polímeros e até a ruptura
  26. 35. Ácido só em escala laboratorial Explosão a vapor – Algumas usinas Fazem o tratamento para enriquecer Rações de frango e de gado
  27. 38. The cellulose thus obtained by this process contains α -cellulose (93%), ß-cellulose (4.1%), hemicellulose (2.22%) and traces of lignin (0.18%). Hydrolysis of cellulose derived from steam exploded bagasse by Penicillium cellulases: Comparison with commercial cellulase Rajkumar Singh a, A.J. Varma b, R. Seeta Laxman a,*, Mala Rao a,*Bioresource Technology 100 (2009) 6679–6681
  28. 39. vapor d’água a 14 kg/cm2, por 8 min Nardini Agroindiustrial Ltda
  29. 40. EXISTE UM CONSENSO QUE SÓ A PRODUÇÃO DE CELULASES EFICIENTES NÃO SERÁ SUFICIENTE PARA A DECOMPOSIÇÃO DE MATERIAIS LIGNOCELULÓSICOS
  30. 42. Filtração dos oligossacarídeos para evitar A inibição pelos produtos
  31. 43. Melhoria das linhagens por tratamentos mutagênicos Para a produção de enzimas tolerantes aos seus produtos
  32. 44. PESQUISADORES PROCURAM MICRORGANISMOS QUE PRODUZAM ENZIMAS TOLERANTES AOS SEUS PRODUTOS
  33. 45. celobiose Glucose NORMALMENTE TODAS ESSAS ENZIMAS SÃO INIBIDAS PELOS PRODUTOS
  34. 46. Fungos termófilos São fungos que crescem acima de 40ºC mas não crescem a temperatura inferiores a 20ºC
  35. 47. Fungos termófilos: Enzimas termoresistentes e que são ideais para Processos industriais
  36. 48. Humicola grisea Isolado da decompostagem
  37. 51. celobiose Glucose NORMALMENTE TODAS ESSAS ENZIMAS SÃO INIBIDAS PELOS PRODUTOS
  38. 52. S. thermophilum
  39. 53. ß-glucosidase de H. grisea
  40. 54. Humicola insolens
  41. 55. EFEITO DA GLICOSE NA ENDOCELULASE DE S. thermophilum
  42. 56. EFEITO DA CELOBIOSE NA ENDOCELULASE DE S. thermophilum
  43. 57. Obtaining the mutant Ultraviolet light Spore solution of Trichoderma reesei QM 9414 12,5 cm Mandels medium (1976) with 1% CMC 27ºC for 48 hours 5’ 10’ 15’ 20’ Fast growth PDA medium
  44. 58. Growth on solid medium (PDA medium) 27°C for 4 days T. reesei QM 9414 T. reesei RP-98
  45. 59. Cellulasic activities of crude filtrates after growth in liquid medium with Avicel as carbon source 8 days of cultivation 27ºC 110 rpm  3-fold  9,5-fold  8-fold
  46. 60. celobiose Glucose NORMALMENTE TODAS ESSAS ENZIMAS SÃO INIBIDAS PELOS PRODUTOS
  47. 61. Efeito da glicose (●) e celobiose (o) na atividade celulásica do filtrado de Trichoderma reesei RP 98
  48. 62. S. thermophilum 0 1 2 3 4 5 25 50 75 100 Símbolos: Aberto - Glicose Fechado - Celobiose Atividade relativa (%) Efetor (%)
  49. 63. T. reseei RP-98: 10 U FPase / g substrate (T) S. thermophilum : 10 U extracellular β-glucosidase / g substrate (SE) S. thermophilum : 10 U mycelial β-glucosidase / g substrate (SM)  20%  30% Synergism between crude filtrates of Trichoderma reesei RP-98 and Scytalidium thermophilum 6 hours of reaction 50ºC pH 5,0 5 ml Substrate: filter paper
  50. 64.  20%  2.5-FOLD Synergism between crude filtrates of Trichoderma reesei RP-98 and Scytalidium thermophilum 6 hours of reaction 50ºC pH 5,0 5 ml Substrate: filter paper 0 1 2 3 4 5 6 0 2 4 6 8 10 12 14 16 Glucose (mg) Time (hours) ENDO+ ß-GLUC* ENDO + ß-GLUC ENDO (CONTROLE)
  51. 66. Progress kinectis of the enzymatic hydrolysis of sugarcane bagasse Endo Endo + ß-Gluc bruta Endo + ß-Gluc pura Endo H. grisea
  52. 67. Sacarificação do bagaço explodido na presença da celulase de Trichoderma reesei e do filtrado do Chaetomium termophilum . Tricho Tricho + Chaeto
  53. 68. Sacarificação do bagaço comum moído na presença da celulase de Trichoderma reesei e do filtrado do Chaetomium termophilum . Tricho + Chaeto Tricho
  54. 69. - Bagaço tratado facilita a ação das Enzimas - Coquetel enzimático é mais eficiente
  55. 70. S0 SE TO TE S+T O S+T E ATIVIDADE SOBRE O PAPEL DE FILTRO
  56. 71. POSSÍVEIS FONTES DE BIOMASSA: Bagaço de Cana – 10 8 Toneladas/ ano Cavaco de madeira – 10 7 ton / ano Lenha – 10 8 ton/ ano Palha de arroz – 10 7 ton/ ano
  57. 72. O BAGAÇO FOI O QUE RECEBEU MAIOR ATENÇÃO
  58. 74. ESSA PREFERÊNCIA PODE SER EXPLICADA PELO FATO DO BAGAÇO JÁ ESTAR DENTRO DO LOCAL DE PRODUÇÃO DO ETANOL
  59. 75. Technological Demands for Higher Generation Process for Ethanol Production Carlos Eduardo Vaz Rossell [email_address] Centro de Ciência e Tecnologia do Bioetanol (CTBE) BIOEN Workshop on Processes for Ethanol Production September 10th2009-São Paulo, Brazil Custos : R$ 143,82/tonelada EM 2015 - Custo do etanol : R$ 1,53/litro EM 2025 – Custo do etanol : R$ 0,72/litro
  60. 76. O DEPARTAMENTO DE ENERGIA DOS ESTADOS UNIDOS LANÇOU UM PROJETO QUE FOI INTITULADO DE : “ BREAKING THE BIOLOGICAL BARRIERS TO CELLULOSIC ETHANOL”
  61. 77. <ul><li>Metas </li></ul><ul><li>5 anos : </li></ul><ul><li>Fontes de biomassa </li></ul><ul><li>2) Desconstrução da celulose </li></ul><ul><li>3) Fermentação e recuperação </li></ul>
  62. 78. <ul><li>– 15 ANOS : </li></ul><ul><li>Integração do sistema </li></ul><ul><li>Melhoria na eficiência de produção </li></ul><ul><li>Diminuição dos custos </li></ul>
  63. 79. Miscanthus giganteus
  64. 80. S0 SE TO TE S+T O S+T E ATIVIDADE SOBRE O PAPEL DE FILTRO
  65. 81. Estima-se que no lixo 35 a 40% é papel
  66. 82. Uma possibilidade atraente é reutilizar o papel para a produção de álcool, evitando a necessidade de desconstruir o material lignocelulósico
  67. 83. Elmer Gaden Jr. (Universidade de Vermont) – 1976 Sugeriu que era mais promissor fazer etanol de papel usado do que resíduos da agricultura
  68. 84. S0 SE TO TE S+T O S+T E ATIVIDADE SOBRE O PAPEL DE FILTRO
  69. 85. DO PONTO DE VISTA PRÁTICO JÁ TEMOS TESTES QUE COMPROVAM QUE ENZIMAS PROVENIENTES DO Scytalidim E Trichoderma PODEM SER ÚTEIS NA INDUSTRIA DE PAPEL ABSORVENTE.
  70. 86. Colaboradores: Fabiana Zanoelo Jean Carlos Rodrigues Flavio Henrique Moreira de Souza Cesar V Nascimento José Carlos dos Santos Salgado Douglas Masui Rubens Monti Leandra Venturi Rosane Marina Peralta Marina Kadowaki Rosa P. Furriel Maria de Lourdes Polizeli Héctor Francisco Terenzi Mauricio de oliveira Ricardo Alarcon
  71. 87. Bibliografia: Bioetanol de cana-de-açúcar : Energia para o desenvolvimento sustentável (2008). Coordenação do BNDES: www.bioetanoldecana,org , 1ª. Edição, Rio de Janeiro. Gaden, E.L., Mnadels, M. H., Reese, E.T. and Sapno, L.A. (1976). Enzymatic conversion of cellulose materials: technology and applications. Biotechnology and Bioengineering Symposium Nº 6, National Academy of Science and John Willey & Sons, USA. Houghton J., Weatherwax, S., Ferrel, J. (2006). Breaking the biological barriers to Cellosic ethanol. U.S. Department of energy. www.doegenomestolife.org/biofuels/.
  72. 88. F I M Quem pergunta é bobo por cinco minutos. Quem não pergunta é bobo para sempre. Confúcio
  73. 93. In modern commercial plants, ethanol is produced from sugar cane, corn, beets and sorghum, and on an experimental scale, from a number of other fruits, tubers, woody vegetation, etc. Fermentation yields alcohol at a concentration of 10% to 14%, after which fractional distillation becomes necessary.
  74. 94. First-generation Ethanol There are two primary reasons why sugar cane alcohol is much better than any other biofuel: a) Productivity That is, the quantity of biomass produced per unit area is significantly larger for sugar cane than for any other plant – regardless of whether or not it is cultivated for energy biomass. In addition, the quantity of biofuel produced per unit of area,
  75. 95. b) Energy balance (or life cycle) In other words, the ratio of energy delivered to the total energy used to produce it is much larger for sugar cane alcohol than for any other biofuel.
  76. 96. Second-generation Ethanol Fermentation is the process by which microorganisms (yeast) convert sugar or starch into ethanol. A considerable portion of a plant, however, is neither sugar nor starch but fiber – indigestible by traditional yeasts. For sugar cane, twothirds of its mass is non-fermentable biomass fiber, and many plants contain almost no sugar or starch.
  77. 97. What this meansis that two-thirds of sugar cane’s biomass is left out of the conversion to ethanol. Over the past two or three decades, specialists have sought to develop a number of “hydrolysis” technologies, to make it possible to convert fiber (lignin and cellulose) into ethanol.
  78. 98. Likewise in principle it should be possible to convert any other type of crop or vegetable trash. The United States are working on a project to replace 30% of their gasoline consumption with ethanol made by hydrolysis of rejected forest products and plant matter, currently disposed of as trash.
  79. 99. These new technologies, however, are not at all likely to be available for commercial use in fewer than 10 years. Furthermore, although they may put some other crops on a more competitive footing, they certainly will not suffice to attain yields comparable to sugar cane, which will also benefit from these innovations.
  80. 100. In addition, Brazil has 300 million hectares of acreage suitable for sugar cane cultivation – area not occupied by forests, farm crops or protected habitats. This is equal to 100 times the area currently used for alcohol crops (3 million hectares).
  81. 101. Part of this area was once, or is now, occupied by extensive grazing ranges. Brazil is therefore in a position to provide mankind with clean and renewable fuel with which to replace fossil fuels, and thereby make a decisive contribution to the fight against global warming. An added advantage would be the nation’s own economic development
  82. 102. Sustainability All program choices were made for sustainability. Technologies like cogeneration, total use of bagasse and stillage, and shipping the product out through pipelines are all energy-saving technologies.
  83. 103. Although reducing global greenhouse gas emissions is indeed central to the use of biofuels, it is nevertheless imperative that on the upstream, or production, end, environmental impacts be kept as small as possible. To that end, the NIPE study attempted an evaluation of environmental impacts upon replacement of 10% of the world’s gasoline consumption by 2025.
  84. 104. Main source of biomass in Brasil are sugar cane bagasse (108ton/year), wood chip (107ton/year), firewood (108ton/year) and rice straw (107ton/year). In Brasil sugar cane bagasse has received more attention than the others since it is generated inside the ethanol plants, where it is used for steam and electric energy production.
  85. 105. O INTERESSE É USAR O EXCEDENTE DO BAGAÇO PARA FAZER ALCOOL DE SEGUNDA GERAÇÃO
  86. 106. É CONHECIDO QUE O BAGAÇO E OUTRAS FONTES LIGNOCELULÓSICAS SÃO RESILIENTES AO ATAQUE ENZIMÁTICO
  87. 112. Recently, there is an increasing interest in using the excess of sugar cane bagasse to produce second generation ethanol. It is now known that crude bagasse is resilient to enzymatic treatment and two pre-treatments are employed: acid and steam explosion.
  88. 113. . The first involves the heating (127ºC-30 min) of bagasse in presence of diluted acid (sulphuric or chloridric). This procedure results in rupture of polymeric fibbers and is used only in laboratory scale.
  89. 114. The second consists in heating the bagasse at high pressure and temperature for a short period of time (about 8 min) followed by an abrupt expansion. Only few sugar/ethanol plants use this last procedure in order to produce animal food (hen and cow).

×