SlideShare a Scribd company logo
1 of 10
Download to read offline
Int. J. on Recent Trends in Engineering and Technology, Vol. 10, No. 2, Jan 2014

Analysis of PEAQ Model using Wavelet
Decomposition Techniques
Jagadeesh B.K1, Dr. B Siva Kumar 2
1

HKBKCE/Department of ECE, Bangalore, India
Jbkanade_99@yahoo.com
2
Dr.AIT/Department of TCE, Bangalore, India
Sivabs2000@yahoo.co.uk

Abstract— Digital broadcasting, internet audio and music database make use of audio
compression and coding techniques to reduce high quality audio signal without impairing its
perceptual quality. Audio signal compression is the lossy compression
technique, It
converts original converting audio signal into compressed bitstream. The compressed audio
bitstream is decoded at the decoder to produce a close approximation of the original signal.
For the purpose of improving the coding this work attempts to verify the perceptual
evaluation of audio quality (PEAQ) model in BS.1387 using wavelet decomposition
techniques. Finally the comparison of masking threshold for sub-bands using Wavelet
techniques and Fast Fourier transform (FFT) will be done.
Index Terms— Psycho-Acoustic, ATH, DWT, FFT.SMR, CB, WFB, PEAQ

I. INTRODUCTION
Data compression refers to way of reducing data size without affecting the quality of the data; Audio
compression is form of data compression. To acquire compressed audio, different audio compression
methods have been contrived and implemented. These methods vary from simple technique to most advance
and complex that takes sensitivity of the human ear.
In the process of audio compression perceptual limitation of human ear is exploited. This Limitation in
human hearing system is used to remove perceptually irrelevant audio signal. MPEG Audio compression
technique algorithm achieves compression by exploiting the perceptual limitation of the human ear. By
applying audio compression algorithms it is possible to get compact digital representations of audio signals
for efficient transmission without impairing the quality at the receiving end. The main purpose of the audio
compression is to represent the audio signal with a less number of bits while achieving transparent signal
reproduction.
The absolute threshold of hearing (ATH) is used to characterize the amount of energy needed in a pure tone
such that it can be detected by a listener in a noiseless environment. The absolute threshold is typically
expressed in terms of dB SPL. The frequency dependence of this threshold was quantified as early as 1940,
when Fletcher reported test results for a range of listeners that were generated in a National Institutes of
Health study of typical American hearing acuity. The quiet (absolute) threshold is well approximated by the
nonlinear function [1][6].
Absolute threshold of hearing is used to shape the coding distortion spectrum is the first step toward
perceptual coding. Absolute threshold is of limited value in the coding context. Finding threshold for
spectrally complex quantization noise is a modified version of the absolute threshold, with its shape
DOI: 01.IJRTET.10.2.1365
© Association of Computer Electronics and Electrical Engineers, 2014
determined by the stimuli present at any given time. Since stimuli are in general time-varying, the detection
threshold is also a time-varying function of the input signal. Auditory masking is a psycho acoustical
phenomenon in which a weak signal is masked in the presence of a stronger signal, the stronger signal is
called masker and the signal which is masked by stronger signal is called maskee. Exploiting this
phenomenon in perceptual audio compression is achieved so that the original audio signal is treated as a
masker for distortions introduced by lossy data. A masking threshold is computed based on the frequency
representation of the signal.
More specifically, the Fast Fourier Transform (FFT) coefficients are used to evaluate the masking threshold.
The psychoacoustic model used in the perceptual audio coder is based on the Psychoacoustic Models. The
MPEG-1 Audio Standard describes two different psychoacoustic models, i.e. psychoacoustic models-1 and
psychoacoustic models-2 the first being computationally simpler and suitable for coding at higher bit rates
and the second being more complex but also more reliable at lower bit rates.
An auditory model was developed by the International Telecommunications Union (ITU) within the
framework of the Perceptual Evaluation of Audio Quality (adopted as ITUR BS.1387) [9][18]. PEAQ
provides advanced metrics for the assessment of the perceptual quality of audio signaIs. Among other model
output variables, a masking threshold is estimated from the auditory model.
The majority of MPEG [3] coders applies a psycho-acoustic model for coding and uses the filter bank to
approximate the frequency selectivity of the human auditory system. Figure1 (a) and Figure1 (b) shows a
diagram of the structure of a generic perceptual audio coder. Figure 1(a) shows the structure of the encoder,
which has three main stages and a fourth is bit stream formatting stage and Figure 1(b) shows the decoder,
which has three stages.
The encoded audio signal (compressed audio) acts as an input to the decoder and decoder reconstructs the
original signal from the encoded bitstream. The three stages in the decoder, is the reverse operations of
encoder. Three stages in the encoder. Namely, the signal analysis, Quantization and encoding, and bitstream
formatting stages of the encoder correspond to the signal synthesis, de-quantization and decoding, and
bitstream extraction stages of the decoder, respectively. The additional block in the encoder is the
psychoacoustic model, which is not required in the decoder since the information is encoded as sideinformation. This means perceptual coders are asymmetrical and the encoder has a more complex and
requires more computations than the decoder. In this work the author verifies the masking threshold (energy)
of subands for PEAQ model using wavelet decomposition techniques instead of FFT (conventional method)

Figure1 (a) Encoder

Figure1 (b) Decoder

The discrete wavelet transform can conveniently decompose the signal into an auditory critical band-like
partition [2][11].Signal decomposition into critical bands resulting from Wavelet analysis needs to satisfy the
spectral resolution requirements of the human auditory system

148
A. Wavelet Decomposition
Wavelet decomposition [4][13] provides a solution that makes possible for a finer an adjustable resolution of
frequencies at high frequencies. This makes adaptation to particular signals [5]. Psychoacoustic model
achieves an improved decomposition of the signal into critical bands(CB) using the discrete wavelet
decomposition transform (DWT).This results in a spectral partition which approximates the critical band
distribution much closer than before. Furthermore, the
Masking thresholds are computed entirely in the Wavelet domain to get approximation of critical bands.
Wavelet analysis should meet the spectral resolution requirements. The wavelet basis also plays important
role to satisfy temporal resolution of the signal. The continuous wavelet transform (CWT)of signal x relative
to the basic wavelet is given by:
W

1
| a |

x ( a , b )

*

x (t )

(

t

b
a

)

(1)

Where a,b (a,b
, a
respectively the translation and scale parameters. Furthermore, (t-b/a)
represents the wavelet basis functions that are derived from a single mother wavelet function, (t), through
dilations a and translations b. The wavelet basis functions represent an Orthonormal basis to the space of
L2(R) such that,
L2(R) = span { ab (t); a R+, b R} (2)
If the basic wavelet satisfies the admissibility condition, then the wavelet reconstruction formula is:
x (t )

R

W

x ( a , b )

a ,b

(t )

dadb
a

2

The Wavelet filter bank (WFB) is a filter bank that offers a great deal of flexibility in terms of the choice of
the basis filter and the decomposition tree structure. Additionally, the WFB offers a variety of ways of
handling boundary artefacts in the context of block processing. The following sections describe the design of
the WFB in terms of these broad design “parameters”.
The standard DWT involves a dyadic tree structure in which the low-channel side is successively split down
to a certain depth. Wavelet tree decomposition is a wavelet transform in which the signal is passed through
more number of filters .The detail coefficients will be obtained from the right-leaf node of each level and the
approximation coefficients will be obtained from the left-leaf node at the lowest level.Fig.2 illustrates DWT
where the nodes represent the wavelet coefficients (at various decomposition levels).

Figure2 .Wavelet Tree Decomposition

Wavelet tree decomposition with depth one splits the signal into high pass and low pass bands. With depth
two will splits the low pass spectrum from depth one. Each stage wavelet tree decomposition splits low pass
spectrum from previous stage, this yields an octave band pass filter bank wherein sampling rate of each
subband is proportional to its bandwidth.Wavet analysis is efficient because of portions of the frequency
towards the low frequency the psychoacoustic model [7] is based on many studies of human perception.
Studies have proven that the average human does not able to hear all frequencies as same.

149
Figure 3 shows the wavelet tree decomposition. Here “C” denotes the coefficients in the various decomposed
branches of the tree and “L” denotes the number of the coefficients in the corresponding nodes of tree.
Another type of decomposition is wavelet packet decomposition.
Figure4 shows the wavelet packet decomposition with depth three. Wavelet packet decomposition with depth
one splits the signal into high pass and low pass bands and With depth two will splits the low pass spectrum
from depth one. Each stage wavelet packet decomposition splits low pass from previous
stage in to low pass and high pass spectrum and each high pass from previous stage in to low pass and high
pass. This yields an octave band pass filter bank wherein sampling rate of each subband is proportional to its
bandwidth.

Figure 3: Wavelet tree decomposition

Wavelet analysis is efficient because of portions of the frequency towards the low frequency the
psychoacoustic model is based on many studies of human perception. Studies have proven that the average
human does not able to hear all frequencies as same. While choosing specific wavelet decomposition the
author have considered some restrictions to create orthogonal translates and dilates of the wavelet (the same
number of coefficients than the scaling functions), and to ensure regularity (fast decay of coefficients
controlled by choosing wavelets with large number of vanishing moments). In this work author used
orthogonal [15][16] family of wavelets with name “daubechies (DB10)”.

Figure 4: Wavelet Packet decomposition

B. PEAQ model
PEAQ (Perceptual Evaluation of Audio Quality) is the objective measurements Recommendation Standard of
perceived audio quality established by ITU in 1998, which is also called BS.1387. It utilizes software to
simulate perceptual properties of human ear, and then integrates multiindices to evaluate subjective quality of
test audio PEAQ measurement method models fundamental properties of the auditory system [17]. Several
intermediate stages of the standard models physiological and psychoacoustic effects. In this paper author has
done the changes in the BS.1387 with respect to the human ear model without changing the functionality of
the standard. In this paper the work is related human ear model using the wavelet decomposition techniques
instead of FFT and other parts of the standard is unchanged. Figure 5 illustrates the block diagram PEAQ
model, This work also aims at comparing the making energies obtained from the proposed method and the

150
FFT, as mentioned in the standard. BS.1387 involves both ear model and cognitive model. This work aims at
the ear model only and cognitive model is not the scope of this work.
In MPEG psychoacoustic model 2, SMR (ratio between signal energy and masking threshold) is determined
by experiential value of examination observation. The Basic version of PEAQ adopted a design approach
different from MPEG audio standard. It attempts to combine physiological structure of human ear with
masking effect of simple signal represented from examination to find the inherent consequence, and then use
mathematic model to emulate the structure of human ear. Figure 5 illustrates the block diagram of this design
[10], in which the function of outer/middle ear, inner ear, and audio perception related nerve cell and brain
are emulated. This kind of psychoacoustic model could be extended conveniently to acoustic masking of
complex signal.

Figure 5: psychoacoustic model based on PEAQ (Basic version)

PEAQ was initially designed to measure audio quality without special consideration for requirements of
audio coder, such as window switching, unification of critical band scale, estimation of masking properties
on transient signal, etc. Thus, we must take into account these requirements and correct the psychoacoustic
model of PEAQ basic version so as that it could be used in audio coder. Figure 6 shows the proposed design
of basic version of PEAQ psychoacoustic model [14].
The process of human perception is modelled by employing a
Difference measurement technique that compares reference [12] Signal and a test signal (i.e. the "output"
signal of the codec)
II. PROPOSED DESIGN USING WAVELET DECOMPOSITION TECHNIQUES
Method 1:
Using Wavelet Tree Decomposition
The step involved in the proposed method is as shown in figure 6. The implementation steps as below.
Step 1: Framing:
The “.wav” file is actually an uncompressed audio signal, the sampling rate chosen here is 48000Hz.Divide
the audio signal into different frames each frame of size 2048
Step 2: Apply Wavelet tree decomposition to each Frame and Calculate the Energy:
Apply wavelet packet of depth level seven will give total of 128 subands that replicate the 109 critical bands
in PEAQ model(Basic Version) consider only 109 subands for the analysis. The wavelets used in this work
are Debusis wavelets.
Step 3: Outer and Middle Ear Modelling
The outer and middle ear response is modeled by the frequency dependent weighting function[17]
Step 4: Frequency Grouping

151
In this step take a frame of frequency domain samples and group them into the frequency bands these
frequency bands will be grouped according to the critical bands
Step 5: Adding of internal Noise
Internal noise is generated by blood flow within the human ear and this will be modelled by adding the
frequency dependent Energies of the frequency groups. The internal noise function is implemented with the
reference[17].
Step 6: Frequency Spreading
The spreading function is adopted from an auditory model developed by Terhardt [18]
Step 7: Time domain spreading
Temporal masking effect is incorporated in time domain
Spreading.
In this model temporal masking ct is considered by means
of first-order smooth filtering [17].
Step 8: Calculation of Masking Parameters
The masking threshold is calculated by weighting the excitation patterns [17].
The masking (Threshold) energy for each band is obtained by
E mask (dB) (i) = E f(dB)(i) – mdB(i)
Method2:
Using Wavelet Packet Decomposition
The step involved in the proposed method is as shown in figure 7. The implementation steps as below
Step 1: Framing:
The “.wav” file is actually an uncompressed audio signal, the sampling rate chosen here is 48000Hz.Divide
the audio signal into different frames each frame of size 2048

Figure 6: Flow chart for the proposed PEAQ model (Method 1)

Step 2: Apply Wavelet packet decomposition to each Frame and Calculation of the masking Energy:
152
Apply wavelet packet decomposition for each frame and the depth level seven will give total of 128 subands
that replicate the 109 critical bands in PEAQ model (Basic Version). The wavets used in this work is Debusis
wavelets
Step 3: Follow the step 3 to step8 from method 1.

Figure 7: Flow chart for the proposed PEAQ Model (Method 2)

A. Experimental Results
In this work we have implemented PEAQ model using Wavelet decomposition techniques. The two
decomposition techniques used in this paper are wavelet tree decomposition (Method 1) and wavelet packet
decomposition (Method 2).
Author has used several inputs to test the proposed algorithm. The results of the two inputs have listed in this
paper. Figure 8, figure 9 and figure.10 indicate the results of test vector one and figure 11, figure12 and
figure 13 indicate the results for test input 2. For the test input 1 Figure 8 shows the implementation using
FFT.Figure 9 and Figure 10 shows the results of propsesd wavelet techniques.From the Figure 9 and
Figure10 it is evident that masking energy obtained from the proposed methods better estimate the masking
energy for subbands under consideration compare to FFT method. Figure9 and figure.10 gives the better
masking threshold estimate compare to that of masking threshold obtained from the FFT method(Figure 8).
For the test input 2 same observations can be made from the figures 11,12 and figure 13.
Test input 1:Results

Figure 8 : Distribution curve of masking energy using

153
FFT (PEAQ Basic Version)

Figure 9: Distribution curve of masking energy using Proposed method (Wavelet packet Decomposition)

Figure 10: Distribution curve of masking energy using Proposed method (Wavelet Tree Decomposition)

Using wavelet decomposition techniques we can observe that only for first few sub bands the the masking
threshold is more compare to FFT methods but as we are moving towards higher number of subbands the
masking energy is predominantly less comapre to that of FFT .Hence it will contiribute towards the data
compression.Again among the defferent wavelet decompostion techniques Wavelet tree decomposition gives
highre values of masking compare to that of wavelet packet decompostion method for the same subabnds
under consideration. From the results we can observe that wavelet tree decomposition technique is giving
more masking energy compare to FFT and wavelet packet decomposition techniques.

154
Test input 2:Results

Figure 11: Distribution curve of masking energy using FFT (PEAQ Basic Version)

Figure 12: Distribution curve of masking energy using Proposed method (Wavelet Tree Decomposition)

III. CONCLUSION AND FUTURE WORK
The PEAQ based psychoacoustic model using wavelet decomposition techniques takes an account of the
critical bands and masking phenomenon. The specialty of the proposed techniques is that it gives an analysis
by wavelet decomposition on the frequency bands that gives the closer approximation of the critical bands of
the ear.In estimates masking threshold more accurately compare to masking threshold obtained from FFT as
in the standard BS.1387 standard.
The future work involves the analysis of PEAQ model using the wavelet lifting scheme and audio quality test
(As mentioned in the other parts of the standard BS.1387) which involves the integration of the proposed
method with the cognitive model of the standard BS.1387. Also the proposed method can be integrated with
the other blocks of the MPEG audio codecs to get overall compression ratio.

155
Figure 13: Distribution curve of masking energy using Proposed method (Wavelet packet Decomposition)

REFERENCES
[1] T. Painter and A. Spanias,”Perceptual coding of digital audio,” Proc. IEEE Trans.Sig, vol. 88, Apr. 2000, pp. 51-513
[2] D.Sinha and A.Tewfik, Low Bit Rate Transparent Audio Compression using adapted wavelets, IEEE
Trans.Sig.Proc, pp.3463-3479, Dec 1993.
[3] Information technology-Coding of moving pictures and associated audio for digital storage media at up to about 1, 5
Mbit/s-Part3: Audio, 1999.
[4] M. V. Wickerhauser, “Adapted wavelet analysis from theory to software,” Wellesley, assachusetts, 1994.
[5] C.S.Burrus, R.A. Gopinath and H.Guo, “Introduction to wavelets and wavelets transforms: A Primer, “Prentice Hall,
1998.
[6] H.Najafzadeh-Azghandi, Perceptual Coding of Narrowband Audio Signals. PhD thesis, McGill University,
Montreal, Canada, ApI. 2000.
[7] M. R. Zurera, F. L. Ferreras, M. P. J. Amores, S.M. Basc´ on, and N. R. Reyes, “A new algorithm for translating
psycho-acoustic information to the wavelet domain,” Signal Processing, vol. 81, no. 3, pp. 519–531, 2001.
[8] B. Lincoln, “An experimental high fidelity perceptual audio coder,” Project in MUS420 Win97, March 1998.
[9] J. D. Johnston, “Transform coding of audio signals using perceptual noise criteria,” IEEE Journal on Selected Areas
in Communications,vol. 6, no. 2, pp. 314–323, 1988.
[10] T. Thiede, W. C. Treurniet, R. Bitto, C. Schmidmer, T. Sporer, J. G. Beerends, C. Colomes, M. Keyhl, G. Stoll, K.
Brandenburg, and B. Feiten, "PEAQ - the ITU standard for objective measurement of perceived audio quality," J.
Audio Eng. Soc.,vol. 48, pp. 2-29, Jan. 2000.
[11] B. Carnero and A. Drygajlo, “Perceptual speech coding and enhancement using frame-synchronized fast wavelet
packet transform algorithms,” IEEE Transactions on Signal Processing,vol. 47, no. 6, pp. 1622–1635, 1999.
[12] Dermot Campbell, Edward Jones, Martin Lavin " Audio quality assessment techniques—A review and recent
developments" Elsevier Signal Processing89 (2009)1489–1500
[13] Strang, G., Nguyen, T., 1996. “Wavelets and Filter Banks” Wellesley-Cambridge Press, Wellesley, Massachusetts.
[14] Xiaopeng Hu Guiming He Xiaoping Zhou Peaq-Based Psychoacoustic Model for Perceptual Audio Coder,
ICA0T2006
[15] Meyer, Y. (1989), "Orthonormal Wavelets ", in wavelets, Proc. Int. Conf. France, Springer, Berlin.
[16] Ogden RT. (1997), “Essential Wavelets for Statistical Applications and Data Analysis”.Birkhauser, Boston.
[17] Kabal, P. 2002. An examination and interpretation of ITU-R BS.1387: Perceptual evaluation of audio quality.
Montreal, Department of Electrical & Computer Engineering, McGill University, TSP Lab technical report. 89 p.
[18] International Telecommunication Union, Method for Objective Measurements of Perceived Audio Quality, July
1999. ITU-R Recommendation BS.1387.

156

More Related Content

What's hot

Digital modeling of speech signal
Digital modeling of speech signalDigital modeling of speech signal
Digital modeling of speech signalVinodhini
 
Speech Compression using LPC
Speech Compression using LPCSpeech Compression using LPC
Speech Compression using LPCDisha Modi
 
SPEECH COMPRESSION TECHNIQUES: A REVIEW
SPEECH COMPRESSION TECHNIQUES: A REVIEWSPEECH COMPRESSION TECHNIQUES: A REVIEW
SPEECH COMPRESSION TECHNIQUES: A REVIEWijiert bestjournal
 
129966864160453838[1]
129966864160453838[1]129966864160453838[1]
129966864160453838[1]威華 王
 
44 i9 advanced-speaker-recognition
44 i9 advanced-speaker-recognition44 i9 advanced-speaker-recognition
44 i9 advanced-speaker-recognitionsunnysyed
 
1 AUDIO SIGNAL PROCESSING
1 AUDIO SIGNAL PROCESSING1 AUDIO SIGNAL PROCESSING
1 AUDIO SIGNAL PROCESSINGmukesh bhardwaj
 
multirate signal processing for speech
multirate signal processing for speechmultirate signal processing for speech
multirate signal processing for speechRudra Prasad Maiti
 
A Novel Uncertainty Parameter SR ( Signal to Residual Spectrum Ratio ) Evalua...
A Novel Uncertainty Parameter SR ( Signal to Residual Spectrum Ratio ) Evalua...A Novel Uncertainty Parameter SR ( Signal to Residual Spectrum Ratio ) Evalua...
A Novel Uncertainty Parameter SR ( Signal to Residual Spectrum Ratio ) Evalua...sipij
 
Speech Compression using LPC
Speech Compression using LPCSpeech Compression using LPC
Speech Compression using LPCDisha Modi
 
METHOD FOR REDUCING OF NOISE BY IMPROVING SIGNAL-TO-NOISE-RATIO IN WIRELESS LAN
METHOD FOR REDUCING OF NOISE BY IMPROVING SIGNAL-TO-NOISE-RATIO IN WIRELESS LANMETHOD FOR REDUCING OF NOISE BY IMPROVING SIGNAL-TO-NOISE-RATIO IN WIRELESS LAN
METHOD FOR REDUCING OF NOISE BY IMPROVING SIGNAL-TO-NOISE-RATIO IN WIRELESS LANIJNSA Journal
 
Audio Noise Removal – The State of the Art
Audio Noise Removal – The State of the ArtAudio Noise Removal – The State of the Art
Audio Noise Removal – The State of the Artijceronline
 
Paper id 28201448
Paper id 28201448Paper id 28201448
Paper id 28201448IJRAT
 
Performance Analysis of M-ary Optical CDMA in Presence of Chromatic Dispersion
Performance Analysis of M-ary Optical CDMA in Presence of Chromatic DispersionPerformance Analysis of M-ary Optical CDMA in Presence of Chromatic Dispersion
Performance Analysis of M-ary Optical CDMA in Presence of Chromatic DispersionIDES Editor
 

What's hot (18)

Digital modeling of speech signal
Digital modeling of speech signalDigital modeling of speech signal
Digital modeling of speech signal
 
F010334548
F010334548F010334548
F010334548
 
Speech Compression using LPC
Speech Compression using LPCSpeech Compression using LPC
Speech Compression using LPC
 
Linear Predictive Coding
Linear Predictive CodingLinear Predictive Coding
Linear Predictive Coding
 
SPEECH COMPRESSION TECHNIQUES: A REVIEW
SPEECH COMPRESSION TECHNIQUES: A REVIEWSPEECH COMPRESSION TECHNIQUES: A REVIEW
SPEECH COMPRESSION TECHNIQUES: A REVIEW
 
129966864160453838[1]
129966864160453838[1]129966864160453838[1]
129966864160453838[1]
 
44 i9 advanced-speaker-recognition
44 i9 advanced-speaker-recognition44 i9 advanced-speaker-recognition
44 i9 advanced-speaker-recognition
 
1 AUDIO SIGNAL PROCESSING
1 AUDIO SIGNAL PROCESSING1 AUDIO SIGNAL PROCESSING
1 AUDIO SIGNAL PROCESSING
 
multirate signal processing for speech
multirate signal processing for speechmultirate signal processing for speech
multirate signal processing for speech
 
A Novel Uncertainty Parameter SR ( Signal to Residual Spectrum Ratio ) Evalua...
A Novel Uncertainty Parameter SR ( Signal to Residual Spectrum Ratio ) Evalua...A Novel Uncertainty Parameter SR ( Signal to Residual Spectrum Ratio ) Evalua...
A Novel Uncertainty Parameter SR ( Signal to Residual Spectrum Ratio ) Evalua...
 
Speech Compression using LPC
Speech Compression using LPCSpeech Compression using LPC
Speech Compression using LPC
 
METHOD FOR REDUCING OF NOISE BY IMPROVING SIGNAL-TO-NOISE-RATIO IN WIRELESS LAN
METHOD FOR REDUCING OF NOISE BY IMPROVING SIGNAL-TO-NOISE-RATIO IN WIRELESS LANMETHOD FOR REDUCING OF NOISE BY IMPROVING SIGNAL-TO-NOISE-RATIO IN WIRELESS LAN
METHOD FOR REDUCING OF NOISE BY IMPROVING SIGNAL-TO-NOISE-RATIO IN WIRELESS LAN
 
Speech Signal Processing
Speech Signal ProcessingSpeech Signal Processing
Speech Signal Processing
 
Audio Noise Removal – The State of the Art
Audio Noise Removal – The State of the ArtAudio Noise Removal – The State of the Art
Audio Noise Removal – The State of the Art
 
Paper id 28201448
Paper id 28201448Paper id 28201448
Paper id 28201448
 
K31074076
K31074076K31074076
K31074076
 
Performance Analysis of M-ary Optical CDMA in Presence of Chromatic Dispersion
Performance Analysis of M-ary Optical CDMA in Presence of Chromatic DispersionPerformance Analysis of M-ary Optical CDMA in Presence of Chromatic Dispersion
Performance Analysis of M-ary Optical CDMA in Presence of Chromatic Dispersion
 
Speaker recognition.
Speaker recognition.Speaker recognition.
Speaker recognition.
 

Viewers also liked

Clasificacion quinta etapa_juventud_2015
Clasificacion quinta etapa_juventud_2015Clasificacion quinta etapa_juventud_2015
Clasificacion quinta etapa_juventud_2015LasBielas
 
Analisis de resultados once uno liceo leon de greiff
Analisis de resultados once uno   liceo leon de greiffAnalisis de resultados once uno   liceo leon de greiff
Analisis de resultados once uno liceo leon de greiffONG-COLOMBIA
 
A Novel Approach for Edge Detection using Modified ACIES Filtering
A Novel Approach for Edge Detection using Modified ACIES FilteringA Novel Approach for Edge Detection using Modified ACIES Filtering
A Novel Approach for Edge Detection using Modified ACIES Filteringidescitation
 
Ths Hali Saha Futbol Turnuvasi(1)
Ths Hali Saha Futbol Turnuvasi(1)Ths Hali Saha Futbol Turnuvasi(1)
Ths Hali Saha Futbol Turnuvasi(1)onurka84
 
Resultados generales region ii
Resultados generales region iiResultados generales region ii
Resultados generales region iiagssports.com
 
Somfy korea (vol. 5)
Somfy korea (vol. 5) Somfy korea (vol. 5)
Somfy korea (vol. 5) Somfy Korea
 
Impulsseminar werden sie ein kunden unternehmen - wissensraum 20130704
Impulsseminar werden sie ein kunden unternehmen - wissensraum 20130704Impulsseminar werden sie ein kunden unternehmen - wissensraum 20130704
Impulsseminar werden sie ein kunden unternehmen - wissensraum 20130704ihrepartner.ch gmbh
 
Qr rttes presentacion
Qr rttes presentacionQr rttes presentacion
Qr rttes presentacionqr-codigo
 
Single-Felt Dryer Sections
Single-Felt Dryer SectionsSingle-Felt Dryer Sections
Single-Felt Dryer SectionsKadant Inc.
 
Carrera magisterial
Carrera magisterialCarrera magisterial
Carrera magisterialsnte10
 
Conviértete en un PowerDBA con PowerShell
Conviértete en un PowerDBA con PowerShellConviértete en un PowerDBA con PowerShell
Conviértete en un PowerDBA con PowerShellEnrique Puig
 
Portafolio de medios masivos de comunicación
Portafolio de medios masivos de comunicaciónPortafolio de medios masivos de comunicación
Portafolio de medios masivos de comunicacióndiovre123
 
Trabajo de resistencia final (prensa hidraulica )
Trabajo de resistencia final (prensa hidraulica )Trabajo de resistencia final (prensa hidraulica )
Trabajo de resistencia final (prensa hidraulica )Kleonid
 
Mastering Social Media for Big Brands #SEJThinkTank
Mastering Social Media for Big Brands #SEJThinkTankMastering Social Media for Big Brands #SEJThinkTank
Mastering Social Media for Big Brands #SEJThinkTankSearch Engine Journal
 

Viewers also liked (20)

Clasificacion quinta etapa_juventud_2015
Clasificacion quinta etapa_juventud_2015Clasificacion quinta etapa_juventud_2015
Clasificacion quinta etapa_juventud_2015
 
Analisis de resultados once uno liceo leon de greiff
Analisis de resultados once uno   liceo leon de greiffAnalisis de resultados once uno   liceo leon de greiff
Analisis de resultados once uno liceo leon de greiff
 
Sistema de-gestión-selenne todas las funcionalidades
Sistema de-gestión-selenne todas las funcionalidadesSistema de-gestión-selenne todas las funcionalidades
Sistema de-gestión-selenne todas las funcionalidades
 
A Novel Approach for Edge Detection using Modified ACIES Filtering
A Novel Approach for Edge Detection using Modified ACIES FilteringA Novel Approach for Edge Detection using Modified ACIES Filtering
A Novel Approach for Edge Detection using Modified ACIES Filtering
 
Ths Hali Saha Futbol Turnuvasi(1)
Ths Hali Saha Futbol Turnuvasi(1)Ths Hali Saha Futbol Turnuvasi(1)
Ths Hali Saha Futbol Turnuvasi(1)
 
Resultados generales region ii
Resultados generales region iiResultados generales region ii
Resultados generales region ii
 
Somfy korea (vol. 5)
Somfy korea (vol. 5) Somfy korea (vol. 5)
Somfy korea (vol. 5)
 
PTOF_ IC_SGB_GENOVA
PTOF_ IC_SGB_GENOVAPTOF_ IC_SGB_GENOVA
PTOF_ IC_SGB_GENOVA
 
Impulsseminar werden sie ein kunden unternehmen - wissensraum 20130704
Impulsseminar werden sie ein kunden unternehmen - wissensraum 20130704Impulsseminar werden sie ein kunden unternehmen - wissensraum 20130704
Impulsseminar werden sie ein kunden unternehmen - wissensraum 20130704
 
Qr rttes presentacion
Qr rttes presentacionQr rttes presentacion
Qr rttes presentacion
 
Bobbio majail
Bobbio majail  Bobbio majail
Bobbio majail
 
Single-Felt Dryer Sections
Single-Felt Dryer SectionsSingle-Felt Dryer Sections
Single-Felt Dryer Sections
 
Elfaro 20111001
Elfaro 20111001Elfaro 20111001
Elfaro 20111001
 
Carrera magisterial
Carrera magisterialCarrera magisterial
Carrera magisterial
 
RN Resume
RN ResumeRN Resume
RN Resume
 
Lista de candidatos Potosí
Lista de candidatos PotosíLista de candidatos Potosí
Lista de candidatos Potosí
 
Conviértete en un PowerDBA con PowerShell
Conviértete en un PowerDBA con PowerShellConviértete en un PowerDBA con PowerShell
Conviértete en un PowerDBA con PowerShell
 
Portafolio de medios masivos de comunicación
Portafolio de medios masivos de comunicaciónPortafolio de medios masivos de comunicación
Portafolio de medios masivos de comunicación
 
Trabajo de resistencia final (prensa hidraulica )
Trabajo de resistencia final (prensa hidraulica )Trabajo de resistencia final (prensa hidraulica )
Trabajo de resistencia final (prensa hidraulica )
 
Mastering Social Media for Big Brands #SEJThinkTank
Mastering Social Media for Big Brands #SEJThinkTankMastering Social Media for Big Brands #SEJThinkTank
Mastering Social Media for Big Brands #SEJThinkTank
 

Similar to Analysis of PEAQ Model using Wavelet Decomposition Techniques

Novel Approach of Implementing Psychoacoustic model for MPEG-1 Audio
Novel Approach of Implementing Psychoacoustic model for MPEG-1 AudioNovel Approach of Implementing Psychoacoustic model for MPEG-1 Audio
Novel Approach of Implementing Psychoacoustic model for MPEG-1 Audioinventy
 
20575-38936-1-PB.pdf
20575-38936-1-PB.pdf20575-38936-1-PB.pdf
20575-38936-1-PB.pdfIjictTeam
 
Data Compression using Multiple Transformation Techniques for Audio Applicati...
Data Compression using Multiple Transformation Techniques for Audio Applicati...Data Compression using Multiple Transformation Techniques for Audio Applicati...
Data Compression using Multiple Transformation Techniques for Audio Applicati...iosrjce
 
Digital signal processing techniques for lti fiber impairment compensation
Digital signal processing techniques for lti fiber impairment compensationDigital signal processing techniques for lti fiber impairment compensation
Digital signal processing techniques for lti fiber impairment compensationeSAT Journals
 
Digital signal processing techniques for lti fiber
Digital signal processing techniques for lti fiberDigital signal processing techniques for lti fiber
Digital signal processing techniques for lti fibereSAT Publishing House
 
Implementation of Interleaving Methods on MELP 2.4 Coder to Reduce Packet Los...
Implementation of Interleaving Methods on MELP 2.4 Coder to Reduce Packet Los...Implementation of Interleaving Methods on MELP 2.4 Coder to Reduce Packet Los...
Implementation of Interleaving Methods on MELP 2.4 Coder to Reduce Packet Los...IJERA Editor
 
multimedia chapter1
multimedia chapter1multimedia chapter1
multimedia chapter1nes
 
The application wavelet transform algorithm in testing adc effective number o...
The application wavelet transform algorithm in testing adc effective number o...The application wavelet transform algorithm in testing adc effective number o...
The application wavelet transform algorithm in testing adc effective number o...ijcsit
 
Paper id 252014135
Paper id 252014135Paper id 252014135
Paper id 252014135IJRAT
 
Analysis the results_of_acoustic_echo_cancellation_for_speech_processing_usin...
Analysis the results_of_acoustic_echo_cancellation_for_speech_processing_usin...Analysis the results_of_acoustic_echo_cancellation_for_speech_processing_usin...
Analysis the results_of_acoustic_echo_cancellation_for_speech_processing_usin...Venkata Sudhir Vedurla
 
Real-time DSP Implementation of Audio Crosstalk Cancellation using Mixed Unif...
Real-time DSP Implementation of Audio Crosstalk Cancellation using Mixed Unif...Real-time DSP Implementation of Audio Crosstalk Cancellation using Mixed Unif...
Real-time DSP Implementation of Audio Crosstalk Cancellation using Mixed Unif...CSCJournals
 
PSoC BASED SPEECH RECOGNITION SYSTEM
PSoC BASED SPEECH RECOGNITION SYSTEMPSoC BASED SPEECH RECOGNITION SYSTEM
PSoC BASED SPEECH RECOGNITION SYSTEMirjes
 
PSoC BASED SPEECH RECOGNITION SYSTEM
PSoC BASED SPEECH RECOGNITION SYSTEMPSoC BASED SPEECH RECOGNITION SYSTEM
PSoC BASED SPEECH RECOGNITION SYSTEMIJRES Journal
 

Similar to Analysis of PEAQ Model using Wavelet Decomposition Techniques (20)

Novel Approach of Implementing Psychoacoustic model for MPEG-1 Audio
Novel Approach of Implementing Psychoacoustic model for MPEG-1 AudioNovel Approach of Implementing Psychoacoustic model for MPEG-1 Audio
Novel Approach of Implementing Psychoacoustic model for MPEG-1 Audio
 
ADC Digital Modulation
ADC   Digital ModulationADC   Digital Modulation
ADC Digital Modulation
 
BER PERFORMANCE ANALYSIS OF OFDM IN COGNITIVE RADIO NETWORK IN RAYLEIGH FADIN...
BER PERFORMANCE ANALYSIS OF OFDM IN COGNITIVE RADIO NETWORK IN RAYLEIGH FADIN...BER PERFORMANCE ANALYSIS OF OFDM IN COGNITIVE RADIO NETWORK IN RAYLEIGH FADIN...
BER PERFORMANCE ANALYSIS OF OFDM IN COGNITIVE RADIO NETWORK IN RAYLEIGH FADIN...
 
Sub band project
Sub band projectSub band project
Sub band project
 
20575-38936-1-PB.pdf
20575-38936-1-PB.pdf20575-38936-1-PB.pdf
20575-38936-1-PB.pdf
 
N017657985
N017657985N017657985
N017657985
 
Data Compression using Multiple Transformation Techniques for Audio Applicati...
Data Compression using Multiple Transformation Techniques for Audio Applicati...Data Compression using Multiple Transformation Techniques for Audio Applicati...
Data Compression using Multiple Transformation Techniques for Audio Applicati...
 
Final presentation
Final presentationFinal presentation
Final presentation
 
Digital signal processing techniques for lti fiber impairment compensation
Digital signal processing techniques for lti fiber impairment compensationDigital signal processing techniques for lti fiber impairment compensation
Digital signal processing techniques for lti fiber impairment compensation
 
Digital signal processing techniques for lti fiber
Digital signal processing techniques for lti fiberDigital signal processing techniques for lti fiber
Digital signal processing techniques for lti fiber
 
Implementation of Interleaving Methods on MELP 2.4 Coder to Reduce Packet Los...
Implementation of Interleaving Methods on MELP 2.4 Coder to Reduce Packet Los...Implementation of Interleaving Methods on MELP 2.4 Coder to Reduce Packet Los...
Implementation of Interleaving Methods on MELP 2.4 Coder to Reduce Packet Los...
 
N017428692
N017428692N017428692
N017428692
 
multimedia chapter1
multimedia chapter1multimedia chapter1
multimedia chapter1
 
The application wavelet transform algorithm in testing adc effective number o...
The application wavelet transform algorithm in testing adc effective number o...The application wavelet transform algorithm in testing adc effective number o...
The application wavelet transform algorithm in testing adc effective number o...
 
H0814247
H0814247H0814247
H0814247
 
Paper id 252014135
Paper id 252014135Paper id 252014135
Paper id 252014135
 
Analysis the results_of_acoustic_echo_cancellation_for_speech_processing_usin...
Analysis the results_of_acoustic_echo_cancellation_for_speech_processing_usin...Analysis the results_of_acoustic_echo_cancellation_for_speech_processing_usin...
Analysis the results_of_acoustic_echo_cancellation_for_speech_processing_usin...
 
Real-time DSP Implementation of Audio Crosstalk Cancellation using Mixed Unif...
Real-time DSP Implementation of Audio Crosstalk Cancellation using Mixed Unif...Real-time DSP Implementation of Audio Crosstalk Cancellation using Mixed Unif...
Real-time DSP Implementation of Audio Crosstalk Cancellation using Mixed Unif...
 
PSoC BASED SPEECH RECOGNITION SYSTEM
PSoC BASED SPEECH RECOGNITION SYSTEMPSoC BASED SPEECH RECOGNITION SYSTEM
PSoC BASED SPEECH RECOGNITION SYSTEM
 
PSoC BASED SPEECH RECOGNITION SYSTEM
PSoC BASED SPEECH RECOGNITION SYSTEMPSoC BASED SPEECH RECOGNITION SYSTEM
PSoC BASED SPEECH RECOGNITION SYSTEM
 

More from idescitation (20)

65 113-121
65 113-12165 113-121
65 113-121
 
69 122-128
69 122-12869 122-128
69 122-128
 
71 338-347
71 338-34771 338-347
71 338-347
 
72 129-135
72 129-13572 129-135
72 129-135
 
74 136-143
74 136-14374 136-143
74 136-143
 
80 152-157
80 152-15780 152-157
80 152-157
 
82 348-355
82 348-35582 348-355
82 348-355
 
84 11-21
84 11-2184 11-21
84 11-21
 
62 328-337
62 328-33762 328-337
62 328-337
 
46 102-112
46 102-11246 102-112
46 102-112
 
47 292-298
47 292-29847 292-298
47 292-298
 
49 299-305
49 299-30549 299-305
49 299-305
 
57 306-311
57 306-31157 306-311
57 306-311
 
60 312-318
60 312-31860 312-318
60 312-318
 
5 1-10
5 1-105 1-10
5 1-10
 
11 69-81
11 69-8111 69-81
11 69-81
 
14 284-291
14 284-29114 284-291
14 284-291
 
15 82-87
15 82-8715 82-87
15 82-87
 
29 88-96
29 88-9629 88-96
29 88-96
 
43 97-101
43 97-10143 97-101
43 97-101
 

Analysis of PEAQ Model using Wavelet Decomposition Techniques

  • 1. Int. J. on Recent Trends in Engineering and Technology, Vol. 10, No. 2, Jan 2014 Analysis of PEAQ Model using Wavelet Decomposition Techniques Jagadeesh B.K1, Dr. B Siva Kumar 2 1 HKBKCE/Department of ECE, Bangalore, India Jbkanade_99@yahoo.com 2 Dr.AIT/Department of TCE, Bangalore, India Sivabs2000@yahoo.co.uk Abstract— Digital broadcasting, internet audio and music database make use of audio compression and coding techniques to reduce high quality audio signal without impairing its perceptual quality. Audio signal compression is the lossy compression technique, It converts original converting audio signal into compressed bitstream. The compressed audio bitstream is decoded at the decoder to produce a close approximation of the original signal. For the purpose of improving the coding this work attempts to verify the perceptual evaluation of audio quality (PEAQ) model in BS.1387 using wavelet decomposition techniques. Finally the comparison of masking threshold for sub-bands using Wavelet techniques and Fast Fourier transform (FFT) will be done. Index Terms— Psycho-Acoustic, ATH, DWT, FFT.SMR, CB, WFB, PEAQ I. INTRODUCTION Data compression refers to way of reducing data size without affecting the quality of the data; Audio compression is form of data compression. To acquire compressed audio, different audio compression methods have been contrived and implemented. These methods vary from simple technique to most advance and complex that takes sensitivity of the human ear. In the process of audio compression perceptual limitation of human ear is exploited. This Limitation in human hearing system is used to remove perceptually irrelevant audio signal. MPEG Audio compression technique algorithm achieves compression by exploiting the perceptual limitation of the human ear. By applying audio compression algorithms it is possible to get compact digital representations of audio signals for efficient transmission without impairing the quality at the receiving end. The main purpose of the audio compression is to represent the audio signal with a less number of bits while achieving transparent signal reproduction. The absolute threshold of hearing (ATH) is used to characterize the amount of energy needed in a pure tone such that it can be detected by a listener in a noiseless environment. The absolute threshold is typically expressed in terms of dB SPL. The frequency dependence of this threshold was quantified as early as 1940, when Fletcher reported test results for a range of listeners that were generated in a National Institutes of Health study of typical American hearing acuity. The quiet (absolute) threshold is well approximated by the nonlinear function [1][6]. Absolute threshold of hearing is used to shape the coding distortion spectrum is the first step toward perceptual coding. Absolute threshold is of limited value in the coding context. Finding threshold for spectrally complex quantization noise is a modified version of the absolute threshold, with its shape DOI: 01.IJRTET.10.2.1365 © Association of Computer Electronics and Electrical Engineers, 2014
  • 2. determined by the stimuli present at any given time. Since stimuli are in general time-varying, the detection threshold is also a time-varying function of the input signal. Auditory masking is a psycho acoustical phenomenon in which a weak signal is masked in the presence of a stronger signal, the stronger signal is called masker and the signal which is masked by stronger signal is called maskee. Exploiting this phenomenon in perceptual audio compression is achieved so that the original audio signal is treated as a masker for distortions introduced by lossy data. A masking threshold is computed based on the frequency representation of the signal. More specifically, the Fast Fourier Transform (FFT) coefficients are used to evaluate the masking threshold. The psychoacoustic model used in the perceptual audio coder is based on the Psychoacoustic Models. The MPEG-1 Audio Standard describes two different psychoacoustic models, i.e. psychoacoustic models-1 and psychoacoustic models-2 the first being computationally simpler and suitable for coding at higher bit rates and the second being more complex but also more reliable at lower bit rates. An auditory model was developed by the International Telecommunications Union (ITU) within the framework of the Perceptual Evaluation of Audio Quality (adopted as ITUR BS.1387) [9][18]. PEAQ provides advanced metrics for the assessment of the perceptual quality of audio signaIs. Among other model output variables, a masking threshold is estimated from the auditory model. The majority of MPEG [3] coders applies a psycho-acoustic model for coding and uses the filter bank to approximate the frequency selectivity of the human auditory system. Figure1 (a) and Figure1 (b) shows a diagram of the structure of a generic perceptual audio coder. Figure 1(a) shows the structure of the encoder, which has three main stages and a fourth is bit stream formatting stage and Figure 1(b) shows the decoder, which has three stages. The encoded audio signal (compressed audio) acts as an input to the decoder and decoder reconstructs the original signal from the encoded bitstream. The three stages in the decoder, is the reverse operations of encoder. Three stages in the encoder. Namely, the signal analysis, Quantization and encoding, and bitstream formatting stages of the encoder correspond to the signal synthesis, de-quantization and decoding, and bitstream extraction stages of the decoder, respectively. The additional block in the encoder is the psychoacoustic model, which is not required in the decoder since the information is encoded as sideinformation. This means perceptual coders are asymmetrical and the encoder has a more complex and requires more computations than the decoder. In this work the author verifies the masking threshold (energy) of subands for PEAQ model using wavelet decomposition techniques instead of FFT (conventional method) Figure1 (a) Encoder Figure1 (b) Decoder The discrete wavelet transform can conveniently decompose the signal into an auditory critical band-like partition [2][11].Signal decomposition into critical bands resulting from Wavelet analysis needs to satisfy the spectral resolution requirements of the human auditory system 148
  • 3. A. Wavelet Decomposition Wavelet decomposition [4][13] provides a solution that makes possible for a finer an adjustable resolution of frequencies at high frequencies. This makes adaptation to particular signals [5]. Psychoacoustic model achieves an improved decomposition of the signal into critical bands(CB) using the discrete wavelet decomposition transform (DWT).This results in a spectral partition which approximates the critical band distribution much closer than before. Furthermore, the Masking thresholds are computed entirely in the Wavelet domain to get approximation of critical bands. Wavelet analysis should meet the spectral resolution requirements. The wavelet basis also plays important role to satisfy temporal resolution of the signal. The continuous wavelet transform (CWT)of signal x relative to the basic wavelet is given by: W 1 | a | x ( a , b ) * x (t ) ( t b a ) (1) Where a,b (a,b , a respectively the translation and scale parameters. Furthermore, (t-b/a) represents the wavelet basis functions that are derived from a single mother wavelet function, (t), through dilations a and translations b. The wavelet basis functions represent an Orthonormal basis to the space of L2(R) such that, L2(R) = span { ab (t); a R+, b R} (2) If the basic wavelet satisfies the admissibility condition, then the wavelet reconstruction formula is: x (t ) R W x ( a , b ) a ,b (t ) dadb a 2 The Wavelet filter bank (WFB) is a filter bank that offers a great deal of flexibility in terms of the choice of the basis filter and the decomposition tree structure. Additionally, the WFB offers a variety of ways of handling boundary artefacts in the context of block processing. The following sections describe the design of the WFB in terms of these broad design “parameters”. The standard DWT involves a dyadic tree structure in which the low-channel side is successively split down to a certain depth. Wavelet tree decomposition is a wavelet transform in which the signal is passed through more number of filters .The detail coefficients will be obtained from the right-leaf node of each level and the approximation coefficients will be obtained from the left-leaf node at the lowest level.Fig.2 illustrates DWT where the nodes represent the wavelet coefficients (at various decomposition levels). Figure2 .Wavelet Tree Decomposition Wavelet tree decomposition with depth one splits the signal into high pass and low pass bands. With depth two will splits the low pass spectrum from depth one. Each stage wavelet tree decomposition splits low pass spectrum from previous stage, this yields an octave band pass filter bank wherein sampling rate of each subband is proportional to its bandwidth.Wavet analysis is efficient because of portions of the frequency towards the low frequency the psychoacoustic model [7] is based on many studies of human perception. Studies have proven that the average human does not able to hear all frequencies as same. 149
  • 4. Figure 3 shows the wavelet tree decomposition. Here “C” denotes the coefficients in the various decomposed branches of the tree and “L” denotes the number of the coefficients in the corresponding nodes of tree. Another type of decomposition is wavelet packet decomposition. Figure4 shows the wavelet packet decomposition with depth three. Wavelet packet decomposition with depth one splits the signal into high pass and low pass bands and With depth two will splits the low pass spectrum from depth one. Each stage wavelet packet decomposition splits low pass from previous stage in to low pass and high pass spectrum and each high pass from previous stage in to low pass and high pass. This yields an octave band pass filter bank wherein sampling rate of each subband is proportional to its bandwidth. Figure 3: Wavelet tree decomposition Wavelet analysis is efficient because of portions of the frequency towards the low frequency the psychoacoustic model is based on many studies of human perception. Studies have proven that the average human does not able to hear all frequencies as same. While choosing specific wavelet decomposition the author have considered some restrictions to create orthogonal translates and dilates of the wavelet (the same number of coefficients than the scaling functions), and to ensure regularity (fast decay of coefficients controlled by choosing wavelets with large number of vanishing moments). In this work author used orthogonal [15][16] family of wavelets with name “daubechies (DB10)”. Figure 4: Wavelet Packet decomposition B. PEAQ model PEAQ (Perceptual Evaluation of Audio Quality) is the objective measurements Recommendation Standard of perceived audio quality established by ITU in 1998, which is also called BS.1387. It utilizes software to simulate perceptual properties of human ear, and then integrates multiindices to evaluate subjective quality of test audio PEAQ measurement method models fundamental properties of the auditory system [17]. Several intermediate stages of the standard models physiological and psychoacoustic effects. In this paper author has done the changes in the BS.1387 with respect to the human ear model without changing the functionality of the standard. In this paper the work is related human ear model using the wavelet decomposition techniques instead of FFT and other parts of the standard is unchanged. Figure 5 illustrates the block diagram PEAQ model, This work also aims at comparing the making energies obtained from the proposed method and the 150
  • 5. FFT, as mentioned in the standard. BS.1387 involves both ear model and cognitive model. This work aims at the ear model only and cognitive model is not the scope of this work. In MPEG psychoacoustic model 2, SMR (ratio between signal energy and masking threshold) is determined by experiential value of examination observation. The Basic version of PEAQ adopted a design approach different from MPEG audio standard. It attempts to combine physiological structure of human ear with masking effect of simple signal represented from examination to find the inherent consequence, and then use mathematic model to emulate the structure of human ear. Figure 5 illustrates the block diagram of this design [10], in which the function of outer/middle ear, inner ear, and audio perception related nerve cell and brain are emulated. This kind of psychoacoustic model could be extended conveniently to acoustic masking of complex signal. Figure 5: psychoacoustic model based on PEAQ (Basic version) PEAQ was initially designed to measure audio quality without special consideration for requirements of audio coder, such as window switching, unification of critical band scale, estimation of masking properties on transient signal, etc. Thus, we must take into account these requirements and correct the psychoacoustic model of PEAQ basic version so as that it could be used in audio coder. Figure 6 shows the proposed design of basic version of PEAQ psychoacoustic model [14]. The process of human perception is modelled by employing a Difference measurement technique that compares reference [12] Signal and a test signal (i.e. the "output" signal of the codec) II. PROPOSED DESIGN USING WAVELET DECOMPOSITION TECHNIQUES Method 1: Using Wavelet Tree Decomposition The step involved in the proposed method is as shown in figure 6. The implementation steps as below. Step 1: Framing: The “.wav” file is actually an uncompressed audio signal, the sampling rate chosen here is 48000Hz.Divide the audio signal into different frames each frame of size 2048 Step 2: Apply Wavelet tree decomposition to each Frame and Calculate the Energy: Apply wavelet packet of depth level seven will give total of 128 subands that replicate the 109 critical bands in PEAQ model(Basic Version) consider only 109 subands for the analysis. The wavelets used in this work are Debusis wavelets. Step 3: Outer and Middle Ear Modelling The outer and middle ear response is modeled by the frequency dependent weighting function[17] Step 4: Frequency Grouping 151
  • 6. In this step take a frame of frequency domain samples and group them into the frequency bands these frequency bands will be grouped according to the critical bands Step 5: Adding of internal Noise Internal noise is generated by blood flow within the human ear and this will be modelled by adding the frequency dependent Energies of the frequency groups. The internal noise function is implemented with the reference[17]. Step 6: Frequency Spreading The spreading function is adopted from an auditory model developed by Terhardt [18] Step 7: Time domain spreading Temporal masking effect is incorporated in time domain Spreading. In this model temporal masking ct is considered by means of first-order smooth filtering [17]. Step 8: Calculation of Masking Parameters The masking threshold is calculated by weighting the excitation patterns [17]. The masking (Threshold) energy for each band is obtained by E mask (dB) (i) = E f(dB)(i) – mdB(i) Method2: Using Wavelet Packet Decomposition The step involved in the proposed method is as shown in figure 7. The implementation steps as below Step 1: Framing: The “.wav” file is actually an uncompressed audio signal, the sampling rate chosen here is 48000Hz.Divide the audio signal into different frames each frame of size 2048 Figure 6: Flow chart for the proposed PEAQ model (Method 1) Step 2: Apply Wavelet packet decomposition to each Frame and Calculation of the masking Energy: 152
  • 7. Apply wavelet packet decomposition for each frame and the depth level seven will give total of 128 subands that replicate the 109 critical bands in PEAQ model (Basic Version). The wavets used in this work is Debusis wavelets Step 3: Follow the step 3 to step8 from method 1. Figure 7: Flow chart for the proposed PEAQ Model (Method 2) A. Experimental Results In this work we have implemented PEAQ model using Wavelet decomposition techniques. The two decomposition techniques used in this paper are wavelet tree decomposition (Method 1) and wavelet packet decomposition (Method 2). Author has used several inputs to test the proposed algorithm. The results of the two inputs have listed in this paper. Figure 8, figure 9 and figure.10 indicate the results of test vector one and figure 11, figure12 and figure 13 indicate the results for test input 2. For the test input 1 Figure 8 shows the implementation using FFT.Figure 9 and Figure 10 shows the results of propsesd wavelet techniques.From the Figure 9 and Figure10 it is evident that masking energy obtained from the proposed methods better estimate the masking energy for subbands under consideration compare to FFT method. Figure9 and figure.10 gives the better masking threshold estimate compare to that of masking threshold obtained from the FFT method(Figure 8). For the test input 2 same observations can be made from the figures 11,12 and figure 13. Test input 1:Results Figure 8 : Distribution curve of masking energy using 153
  • 8. FFT (PEAQ Basic Version) Figure 9: Distribution curve of masking energy using Proposed method (Wavelet packet Decomposition) Figure 10: Distribution curve of masking energy using Proposed method (Wavelet Tree Decomposition) Using wavelet decomposition techniques we can observe that only for first few sub bands the the masking threshold is more compare to FFT methods but as we are moving towards higher number of subbands the masking energy is predominantly less comapre to that of FFT .Hence it will contiribute towards the data compression.Again among the defferent wavelet decompostion techniques Wavelet tree decomposition gives highre values of masking compare to that of wavelet packet decompostion method for the same subabnds under consideration. From the results we can observe that wavelet tree decomposition technique is giving more masking energy compare to FFT and wavelet packet decomposition techniques. 154
  • 9. Test input 2:Results Figure 11: Distribution curve of masking energy using FFT (PEAQ Basic Version) Figure 12: Distribution curve of masking energy using Proposed method (Wavelet Tree Decomposition) III. CONCLUSION AND FUTURE WORK The PEAQ based psychoacoustic model using wavelet decomposition techniques takes an account of the critical bands and masking phenomenon. The specialty of the proposed techniques is that it gives an analysis by wavelet decomposition on the frequency bands that gives the closer approximation of the critical bands of the ear.In estimates masking threshold more accurately compare to masking threshold obtained from FFT as in the standard BS.1387 standard. The future work involves the analysis of PEAQ model using the wavelet lifting scheme and audio quality test (As mentioned in the other parts of the standard BS.1387) which involves the integration of the proposed method with the cognitive model of the standard BS.1387. Also the proposed method can be integrated with the other blocks of the MPEG audio codecs to get overall compression ratio. 155
  • 10. Figure 13: Distribution curve of masking energy using Proposed method (Wavelet packet Decomposition) REFERENCES [1] T. Painter and A. Spanias,”Perceptual coding of digital audio,” Proc. IEEE Trans.Sig, vol. 88, Apr. 2000, pp. 51-513 [2] D.Sinha and A.Tewfik, Low Bit Rate Transparent Audio Compression using adapted wavelets, IEEE Trans.Sig.Proc, pp.3463-3479, Dec 1993. [3] Information technology-Coding of moving pictures and associated audio for digital storage media at up to about 1, 5 Mbit/s-Part3: Audio, 1999. [4] M. V. Wickerhauser, “Adapted wavelet analysis from theory to software,” Wellesley, assachusetts, 1994. [5] C.S.Burrus, R.A. Gopinath and H.Guo, “Introduction to wavelets and wavelets transforms: A Primer, “Prentice Hall, 1998. [6] H.Najafzadeh-Azghandi, Perceptual Coding of Narrowband Audio Signals. PhD thesis, McGill University, Montreal, Canada, ApI. 2000. [7] M. R. Zurera, F. L. Ferreras, M. P. J. Amores, S.M. Basc´ on, and N. R. Reyes, “A new algorithm for translating psycho-acoustic information to the wavelet domain,” Signal Processing, vol. 81, no. 3, pp. 519–531, 2001. [8] B. Lincoln, “An experimental high fidelity perceptual audio coder,” Project in MUS420 Win97, March 1998. [9] J. D. Johnston, “Transform coding of audio signals using perceptual noise criteria,” IEEE Journal on Selected Areas in Communications,vol. 6, no. 2, pp. 314–323, 1988. [10] T. Thiede, W. C. Treurniet, R. Bitto, C. Schmidmer, T. Sporer, J. G. Beerends, C. Colomes, M. Keyhl, G. Stoll, K. Brandenburg, and B. Feiten, "PEAQ - the ITU standard for objective measurement of perceived audio quality," J. Audio Eng. Soc.,vol. 48, pp. 2-29, Jan. 2000. [11] B. Carnero and A. Drygajlo, “Perceptual speech coding and enhancement using frame-synchronized fast wavelet packet transform algorithms,” IEEE Transactions on Signal Processing,vol. 47, no. 6, pp. 1622–1635, 1999. [12] Dermot Campbell, Edward Jones, Martin Lavin " Audio quality assessment techniques—A review and recent developments" Elsevier Signal Processing89 (2009)1489–1500 [13] Strang, G., Nguyen, T., 1996. “Wavelets and Filter Banks” Wellesley-Cambridge Press, Wellesley, Massachusetts. [14] Xiaopeng Hu Guiming He Xiaoping Zhou Peaq-Based Psychoacoustic Model for Perceptual Audio Coder, ICA0T2006 [15] Meyer, Y. (1989), "Orthonormal Wavelets ", in wavelets, Proc. Int. Conf. France, Springer, Berlin. [16] Ogden RT. (1997), “Essential Wavelets for Statistical Applications and Data Analysis”.Birkhauser, Boston. [17] Kabal, P. 2002. An examination and interpretation of ITU-R BS.1387: Perceptual evaluation of audio quality. Montreal, Department of Electrical & Computer Engineering, McGill University, TSP Lab technical report. 89 p. [18] International Telecommunication Union, Method for Objective Measurements of Perceived Audio Quality, July 1999. ITU-R Recommendation BS.1387. 156