
Be the first to like this
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
Superresolution (SR) is the process of obtaining a high resolution (HR) image or
a sequence of HR images from a set of low resolution (LR) observations. The block
matching algorithms used for motion estimation to obtain motion vectors between the
frames in Superresolution. The implementation and comparison of two different types of
block matching algorithms viz. Exhaustive Search (ES) and Spiral Search (SS) are
discussed. Advantages of each algorithm are given in terms of motion estimation
computational complexity and Peak Signal to Noise Ratio (PSNR). The Spiral Search
algorithm achieves PSNR close to that of Exhaustive Search at less computation time than
that of Exhaustive Search. The algorithms that are evaluated in this paper are widely used
in video superresolution and also have been used in implementing various video standards
like H.263, MPEG4, H.264.
Clipping is a handy way to collect and organize the most important slides from a presentation. You can keep your great finds in clipboards organized around topics.
Be the first to comment