Pollination Declines- SLU talk

474 views
412 views

Published on

Published in: Education, Technology
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
474
On SlideShare
0
From Embeds
0
Number of Embeds
3
Actions
Shares
0
Downloads
5
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Pollination Declines- SLU talk

  1. 1. Historical changes in bee communitycomposition and phenology.Is there a pollination crisis?Ignasi Bartomeusnacho.bartomeus@gmail.com@ibartomeus
  2. 2. 4% of landwasagriculture in ~1800>Z0%ofland isagriculture, now7 billionpeople1 billion people1880195019802010we are +0.6ºcabove the1950-1980meantemperaturelevels1800
  3. 3. 4% of landwasagriculture in ~1800>Z0%ofland isagriculture, now7 billionpeople1 billion people1880195019802010we are +0.6ºcabove the1950-1980meantemperaturelevels1800
  4. 4. 4% of landwasagriculture in ~1800>Z0%ofland isagriculture, now7 billionpeople1 billion people1880195019802010we are +0.6ºcabove the1950-1980meantemperaturelevels1800
  5. 5. but… how are all these changesaffecting plants and animals?
  6. 6. TrendsCauses:Land Use ChangeClimate ChangeConsequences
  7. 7. 2010RachaelWinfree
  8. 8. you canbuy aDeLoreanWe could buy aDelorean!
  9. 9. American NaturalHistory MuseumJohn Ascher
  10. 10. Database:*Date*Collector*CoordinatesAssemble long-term data:
  11. 11. ThisisnottheromantictriphepromisedThis is not theromantic trip hepromised*American Museum ofNatural History*University of Connecticut*Cornell University*Rutgers University*Connecticut Agricultural Station*University of New Hampshire*University of Massachusetts*Vermont State Bee Database*NewYork State Museum*Bohart Museum of Entomology.
  12. 12. TrendsBartomeus et al 2013 PNAS
  13. 13. What do we know about the “pollinator crisis”?
  14. 14. What do we know about the “pollinator crisis”?* Honeybees (managed)* BumblebeesCameron et al. 2011Grixti et al. 2009,Colla et al. 2008,
  15. 15. What do we know about the “pollinator crisis”?* Honeybees (managed)* BumblebeesCameron et al. 2011Grixti et al. 2009,Colla et al. 2008,useum collections throughout the United States (Fig. S1B andable S2). Comparisons of the historical and current datavealed extensive range reductions (Fig. 1 A, D, G, and H) andgnificant decreases in RA in all four species suspected of pop-ation decline (all P < 0.001) (Fig. 2); each was absent fromgnificantly more sites predicted to have high occurrence prob-bilities than were stable species (Fisher’s exact tests; all P <001) (Table S4). Declines in RA appear only within the last 20–0 y, with RA values from current surveys lower than in any de-cade of the last century (Fig. S1C). The four allegedly stablespecies showed no clear patterns of range reduction (Fig. 1 B, C,E, and F and Tables S2, S4, and S5) or consistent declines in RA.Historically, B. occidentalis and B. pensylvanicus had among thebroadest geographic ranges of any bumble bee species in NorthAmerica (Fig. 1 and Table S5). However, the current surveysdetected B. occidentalis only throughout the intermountain westand Rocky Mountains; it was largely absent from the westernportion of its range (Figs. 1A and 2) (detected range-area re-
  16. 16. What do we know about the “pollinator crisis”?* Honeybees (managed)* BumblebeesCameron et al. 2011Grixti et al. 2009,Colla et al. 2008,useum collections throughout the United States (Fig. S1B andable S2). Comparisons of the historical and current datavealed extensive range reductions (Fig. 1 A, D, G, and H) andgnificant decreases in RA in all four species suspected of pop-ation decline (all P < 0.001) (Fig. 2); each was absent fromgnificantly more sites predicted to have high occurrence prob-bilities than were stable species (Fisher’s exact tests; all P <001) (Table S4). Declines in RA appear only within the last 20–0 y, with RA values from current surveys lower than in any de-cade of the last century (Fig. S1C). The four allegedly stablespecies showed no clear patterns of range reduction (Fig. 1 B, C,E, and F and Tables S2, S4, and S5) or consistent declines in RA.Historically, B. occidentalis and B. pensylvanicus had among thebroadest geographic ranges of any bumble bee species in NorthAmerica (Fig. 1 and Table S5). However, the current surveysdetected B. occidentalis only throughout the intermountain westand Rocky Mountains; it was largely absent from the westernportion of its range (Figs. 1A and 2) (detected range-area re-(Pathogens)
  17. 17. What we know about all other >400 bee genera?Biesmeijer et al. 2006
  18. 18. “for most pollinatorspecies, the paucity oflong-term data and theincomplete knowledgeof even basic taxonomyand ecology makedefinitive assessment ofstatus exceedinglydifficult”NAS 2008
  19. 19. Assemble long-term data:
  20. 20. * 47 bee genera comprising 438 species.* >30,000 independently collected bee specimensAssemble long-term data:* >1500 collectors* >11000 collection events
  21. 21. * 47 bee genera comprising 438 species.Assemble long-term data:* >1500 collectors* >11000 collection events* >30,000 independently collected bee specimens
  22. 22. Restrict Geographical area & check no temporal bias.
  23. 23. Use independently collected specimens
  24. 24. 1) Richness
  25. 25. Rarefaction:“expected richness if sample size was equal”180200220240Numberofbeespecies(excludingBombus)1872-19131913-19311931-19601960-19651965-19721972-19811981-20022002-20062006-20082008-201112141618NumberofBombusspecies1877-18991899-19061906-19191919-19371937-19631963-19751975-19861986-20052005-20082008-2011024681012Numberofexoticspecies1872-19141914-19321932-19601960-19651965-19721972-19811981-20022002-20062006-20082008-2011BeephotoBeephotoBeephotoNumberofnon-BombusspeciesNumberofBombusspeciesCoelioxys sayiBombus citrinus(A)(B)(C)Anthidium manicatum!{
  26. 26. 180200220240Numberofbeespecies(excludingBombus)1872-19131913-19311931-19601960-19651965-19721972-19811981-20022002-20062006-20082008-201112141618NumberofBombusspecies1877-18991899-19061906-19191919-19371937-19631963-19751975-19861986-20052005-20082008-2011024681012Numberofexoticspecies1872-19141914-19321932-19601960-19651965-19721972-19811981-20022002-20062006-20082008-2011BeephotoBeephotoBeephotoNumberofnon-BombusspeciesNumberofBombusspeciesCoelioxys sayiBombus citrinus(A)(B)(C)Anthidium manicatum!140 people/km^21900’sRarefaction:“expected richness if sample size was equal”
  27. 27. 180200220240Numberofbeespecies(excludingBombus)1872-19131913-19311931-19601960-19651965-19721972-19811981-20022002-20062006-20082008-201112141618NumberofBombusspecies1877-18991899-19061906-19191919-19371937-19631963-19751975-19861986-20052005-20082008-2011024681012Numberofexoticspecies1872-19141914-19321932-19601960-19651965-19721972-19811981-20022002-20062006-20082008-2011BeephotoBeephotoBeephotoNumberofnon-BombusspeciesNumberofBombusspeciesCoelioxys sayiBombus citrinus(A)(B)(C)Anthidium manicatum!p  =  0.07Rarefaction:“expected richness if sample size was equal”140 people/km^2 325 people/km^21900’s 2000’s1950’s
  28. 28. 180200220240Numberofbeespecies(excludingBombus)1872-19131913-19311931-19601960-19651965-19721972-19811981-20022002-20062006-20082008-201112141618NumberofBombusspecies1877-18991899-19061906-19191919-19371937-19631963-19751975-19861986-20052005-20082008-2011024681012Numberofexoticspecies1872-19141914-19321932-19601960-19651965-19721972-19811981-20022002-20062006-20082008-2011BeephotoBeephotoBeephotoNumberofnon-BombusspeciesNumberofBombusspeciesCoelioxys sayiBombus citrinus(A)(B)(C)Anthidium manicatum!p  =  0.01
  29. 29. 180200220240Numberofbeespecies(excludingBombus)1872-19131913-19311931-19601960-19651965-19721972-19811981-20022002-20062006-20082008-201112141618NumberofBombusspecies1877-18991899-19061906-19191919-19371937-19631963-19751975-19861986-20052005-20082008-2011024681012Numberofexoticspecies1872-19141914-19321932-19601960-19651965-19721972-19811981-20022002-20062006-20082008-2011BeephotoBeephotoBeephotoNumberofnon-BombusspeciesNumberofBombusspeciesCoelioxys sayiBombus citrinus(A)(B)(C)Anthidium manicatum!p  =  0.01
  30. 30. 2) Species level
  31. 31. EffortLogistic regression estimate1880 1900 1920 1940 1960 1980 20000.000.050.100.15Halictus ligatusYearProportionincollection● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
  32. 32. 1880 1900 1920 1940 1960 1980 20000.000.050.100.15Andrena carliniYearProportionincollection● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●Logistic regression estimateEffort
  33. 33. CoelioxysMegachileBombusMelissodesOsmiaColletesAndrenaHylaeusHalictusLasioglossumAgapostemonSphecodesNomadaCeratina-0.04-0.020.000.020.04Rateofchange(estimate)CoelioxysMegachileBombusMelissodesOsmiaColletesAndrenaHylaeusHalictusLasioglossumAgapostemonSphecodesNomadaCeratina187  species  29%  had  signi5icant  decreases  27%  had  signi5icant  increases
  34. 34. 1880 1900 1920 1940 1960 1980 20000.000.050.100.15Macropis patellataYearProportionincollection● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●Notrecently inthedatabaseMacropis sp.
  35. 35. 1880 1900 1920 1940 1960 1980 20000.00.20.40.60.81.0Bombus affinisYearPresence/Absence●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
  36. 36. Bombus affinisBombus ashtoniBombus pensylvanicus+ Macropispatellata
  37. 37. 3)Traits
  38. 38. CoelioxysMegachileBombusMelissodesOsmiaColletesAndrenaHylaeusHalictusLasioglossumAgapostemonSphecodesNomadaCeratina-0.04-0.020.000.020.04Rateofchange(estimate)CoelioxysMegachileBombusMelissodesOsmiaColletesAndrenaHylaeusHalictusLasioglossumAgapostemonSphecodesNomadaCeratinaCan BeeTraitsexplain theTrends?
  39. 39. λ of the relativechange estimate = 0.24
  40. 40. Oligolectic Polylectic-0.04-0.020.000.020.04Rateofchange(estimate)1 2 3 4 5 6-0.04-0.020.000.020.04Body size (mm)Rateofchange(estimate)40 60 80 100 120 140-0.04-0.020.000.020.04Phenological breadth (days)Rateofchange(estimate)42 44 46 48 50-0.04-0.020.000.020.04Northernmost latitude recordedRateofchange(estimate)!
  41. 41. Oligolectic Polylectic-0.04-0.020.000.020.04Rateofchange(estimate)1 2 3 4 5 6-0.04-0.020.000.020.04Body size (mm)Rateofchange(estimate)40 60 80 100 120 140-0.04-0.020.000.020.04Phenological breadth (days)Rateofchange(estimate)42 44 46 48 50-0.04-0.020.000.020.04Northernmost latitude recordedRateofchange(estimate)!
  42. 42. Oligolectic Polylectic-0.04-0.020.000.020.04Rateofchange(estimate)1 2 3 4 5 6-0.04-0.020.000.020.04Body size (mm)Rateofchange(estimate)40 60 80 100 120 140-0.04-0.020.000.020.04Phenological breadth (days)Rateofchange(estimate)42 44 46 48 50-0.04-0.020.000.020.04Northernmost latitude recordedRateofchange(estimate)!Oligolectic Polylectic-0.04-0.020.000.020.04Rateofchange(estimate)1 2 3 4 5 6-0.04-0.020.000.020.04Body size (mm)Rateofchange(estimate)40 60 80 100 120 140-0.04-0.020.000.020.04Phenological breadth (days)Rateofchange(estimate)42 44 46 48 50-0.04-0.020.000.020.04Northernmost latitude recordedRateofchange(estimate)!
  43. 43. Oligolectic Polylectic-0.04-0.020.000.020.04Rateofchange(estimate)1 2 3 4 5 6-0.04-0.020.000.020.04Body size (mm)Rateofchange(estimate)40 60 80 100 120 140-0.04-0.020.000.020.04Phenological breadth (days)Rateofchange(estimate)42 44 46 48 50-0.04-0.020.000.020.04Northernmost latitude recordedRateofchange(estimate)!
  44. 44. Causes:Land use ChangeWinfree, Bartomeus, Cariveau 2011 AREES
  45. 45. 265 published studies,contributing a total of674 measures ofpollinator response toanthropogenic landuse
  46. 46. 40%47%13%22%29%49%32%27%41%39%39%21%39%30%30%Bees Butterflies Syrphid fliesBirds Bats
  47. 47. ???300 to 3,000 m radiusab
  48. 48. a Extreme habitat lossAbundance (31)Richness (17)b Moderate habitat loss–1.4 –1.2 –1.0 –0.8 –0.6 –0.4Hedge’s d–0.2 0.0 0.2 0.4Abundance (20)Richness (13)–1.2 –1.0 –0.8 –0.6 –0.4Hedge’s d–0.2 0.0 0.2 0.4igure 4eptember 2011 12:49??????????300 to 3,000 m radiusabFigure 3Schematic showing the two study designs contrasted in this review. (a) Design focused on surroundinglandscape cover. Sampling is generally done within a fixed habitat type. In the most common design, sitesvary in the proportion of surrounding land cover composed of specific habitat types such as forest (dark green)???????300 to 3,000 m radiusgns contrasted in this review. (a) Design focused on surroundingdone within a fixed habitat type. In the most common design, sitesand cover composed of specific habitat types such as forest (dark green)hich landscape cover is assessed varies across studies but is typicallyns, which we include in this category, vary either the linear distance tothe habitat patch. (b) Design focused on local land-use type. Thesees among different habitat types. The surrounding landscape coverpe where pollinators are sampled are generally not reported.h show strong negative responses to land-use change in extremein moderate systems (Supplemental Tables 2 and 3). Extremein abundance and/or richness (e.g., Aizen & Feinsinger 1994,2002, Ockinger & Smith 2006), whereas studies in moderatelyre varied responses (e.g., Bartomeus et al. 2010, Bergman et al.arisons across habitat types, rather than across landscape gra-ffects, and responses are predominantly positive for most taxaes, the ratio of negative-to-positive responses decreases fromto 2.0 for moderate landscape studies, to 0.5 for across-habitatratios decrease from 6.0 to 3.0 to 1.1, respectively (Supple-nses of syrphid flies and vertebrates are difficult to interpretdscape-scale studies that have been conducted (Supplementalndance and/or richness often decrease with increasing humancape, but increase with conversion of natural to anthropogenic
  49. 49. a Extreme habitat lossAbundance (31)Richness (17)b Moderate habitat loss–1.4 –1.2 –1.0 –0.8 –0.6 –0.4Hedge’s d–0.2 0.0 0.2 0.4Abundance (20)Richness (13)–1.2 –1.0 –0.8 –0.6 –0.4Hedge’s d–0.2 0.0 0.2 0.4igure 4
  50. 50. Causes:Climate changeBartomeus et al. 2011 PNAS
  51. 51. daysfrom1JanuaryPhenology
  52. 52. daysfrom1January
  53. 53. daysfrom1January
  54. 54. daysfrom1January
  55. 55. daysfrom1JanuaryYearTime
  56. 56. daysfrom1JanuaryYearTemperatureTime
  57. 57. YearTemperatureMean AprilTemperaturedaysfrom1January
  58. 58. daysfrom1JanuaryYearTemperature-10 species (Osmia, Andrena,Colletes & Bombus)-Early spring (Bombus queens)
  59. 59. daysfrom1JanuaryYearTemperature-Latitude-Sex-Day of collection-3447 specimens-763 collectors
  60. 60. daysfrom1JanuaryYearTemperature
  61. 61. daysfrom1JanuaryYearTemperature{~10 days of mean advance
  62. 62. daysfrom1JanuaryYearTemperature{most dramatic advance in the last 40 years{
  63. 63. daysfrom1JanuaryYearTemperatureMalesFemalesPhoto:AD Howell
  64. 64. daysfrom1JanuaryYearTemperature
  65. 65. daysfrom1JanuaryYearTemperature{Slope
  66. 66. By species:a measure of flight season for each speciesAdvancingrate(days/year)
  67. 67. Andrena crataegiMayAdvancingrate(days/year)
  68. 68. Bombus impatiensAdvancingrate(days/year)
  69. 69. Osmia lignariaAdvancingrate(days/year)
  70. 70. Colletes inaequalisAprilAdvancingrate(days/year)
  71. 71. Why Bee phenology is important?85% of world plants are tosome degree pollinated byanimals (Ollerton et al 2011)Bees are the most effective pollinators (Neff & Simpson 1993)
  72. 72. Interactions have their own timing
  73. 73. 1885-2003 1936-1999 1936-2002 1971-1999-0.4-0.3-0.2-0.10.0SlopeWe used 4 Published plant datasets in our study areaAll plants are commonly visited by the studied beesAdvancingrate(days/year)
  74. 74. 1885-2003 1936-1999 1936-2002 1971-1999-0.4-0.3-0.2-0.10.0SlopeAdvancingrate(days/year)Primack et al. 2004 (Massachusetts)No significant difference.27 Plant species
  75. 75. 1885-2003 1936-1999 1936-2002 1971-1999-0.4-0.3-0.2-0.10.0SlopeAdvancingrate(days/year)Bradley et al. 1999 (Wisconsin)24 Plant speciesNo significant difference.
  76. 76. 1885-2003 1936-1999 1936-2002 1971-1999-0.4-0.3-0.2-0.10.0SlopeAdvancingrate(days/year)Cook et al. 2008 (NewYork State)11 Plant speciesNo significant difference.
  77. 77. 1885-2003 1936-1999 1936-2002 1971-1999-0.4-0.3-0.2-0.10.0SlopeAdvancingrate(days/year)Abu-Asab et al. 2001 (Washington DC )44 Plant speciesNo significant difference.
  78. 78. 1885-2003 1936-1999 1936-2002 1971-1999-0.4-0.3-0.2-0.10.0SlopeAdvancingrate(days/year)
  79. 79. 1885-2003 1936-1999 1936-2002 1971-1999-0.4-0.3-0.2-0.10.0SlopeAdvancingrate(days/year)
  80. 80. 1885-2003 1936-1999 1936-2002 1971-1999-0.4-0.3-0.2-0.10.0SlopeAdvancingrate(days/year)Both “early” Bees and Plants show faster advances
  81. 81. Biodiversity as an insuranceBartomeus et al (in review)
  82. 82. 1960 1970 1980 1990 2000 2010100120140160180200YearCollectionday
  83. 83. 1960 1970 1980 1990 2000 2010100120140160180200YearCollectionday
  84. 84. year: p = 0.8; interaction sp*year: p = 0.01baselineasynchronystability
  85. 85. year: p = 0.8; interaction sp*year: p = 0.01
  86. 86. baselineasynchronystability
  87. 87. Consequencesfor ecosystemservicesBartomeus & Winfree 2013 F1000Research
  88. 88. 76% of crops are animal dependent (Klein et al 2007)
  89. 89. Reporcomplemespecies (1or “sampother mecevennesscomplemedominantthe most edate, theportancecrop polliresults (2on pollinaunknown,insect losevaluatedpollinatedWe tefrom the aeffectivelycrops, andplaced byof honey(1) for mWild Pollinators Enhance Fruit Set ofCrops Regardless of Honey BeeAbundanceLucas A. Garibaldi,1* Ingolf Steffan-Dewenter,2Rachael Winfree,3Marcelo A.Aizen,4Riccardo Bommarco,5Saul A. Cunningham,6Claire Kremen,7Luísa G.Carvalheiro,8,9Lawrence D. Harder,10Ohad Afik,11Ignasi Bartomeus,12FayeBenjamin,3Virginie Boreux,13,14Daniel Cariveau,3Natacha P. Chacoff,15Jan H.Dudenhöffer,16Breno M. Freitas,17Jaboury Ghazoul,14Sarah Greenleaf,7Juliana Hipólito,18Andrea Holzschuh,2Brad Howlett,19Rufus Isaacs,20StevenK. Javorek,21Christina M. Kennedy,22Kristin Krewenka,23Smitha Krishnan,14Yael Mandelik,11Margaret M. Mayfield,24Iris Motzke,13,23Theodore Munyuli,25Brian A. Nault,26Mark Otieno,27Jessica Petersen,26Gideon Pisanty,11Simon G.Potts,27Romina Rader,28Taylor H. Ricketts,29Maj Rundlöf,5,30Colleen L.Seymour,31Christof Schüepp,32,33Hajnalka Szentgyörgyi,34Hisatomo Taki,35Teja Tscharntke,23Carlos H. Vergara,36Blandina F. Viana,18Thomas C.Wanger,23Catrin Westphal,23Neal Williams,37Alexandra M. Klein13*To whom correspondence should be addressed. E-mail: lgaribaldi@unrn.edu.arAffiliations are listed at the end of the text
  90. 90. TrendEcosystemServicesProviders
  91. 91. *Richness weaklydeclining, except forBombus*Specific responses areheterogenous. Only 4species with steepdeclines.*Bees with short nichebreadth and large bodysize are more likely tobe affected.*ESP are less affected
  92. 92. Bees and plants have similar responsesClimate change is altering bee phenology
  93. 93. Thank you- nacho.bartomeus@gmail.comThis project is been possible thanks to...All collectors that collected the beesCo-authors: Rachael Winfree, John Ascher, Jason Gibbs, BryanDanforth, David Wagner, Shannon Hedtke, Sheila Colla, Mia Park adnDan Cariveau.
  94. 94. Local scale data fromBurkle et al 2013Science
  95. 95. April temperature is highly correlated with collection day.

×