Network Slides

2,014 views

Published on

Published in: Technology, Business
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
2,014
On SlideShare
0
From Embeds
0
Number of Embeds
900
Actions
Shares
0
Downloads
33
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Network Slides

  1. 1. Higher Computing Mr Arthur
  2. 2. Course Outline <ul><li>3 Main Units </li></ul><ul><ul><li>Computer Systems = 40 hours </li></ul></ul><ul><ul><li>Software Development = 40 hours </li></ul></ul><ul><ul><li>Artificial Intelligence = 40 hours </li></ul></ul><ul><li>Assessment </li></ul><ul><ul><li>3 End of Unit Assessments (NABS) </li></ul></ul><ul><ul><li>Practical Coursework Tasks (/60 or 30%) </li></ul></ul><ul><ul><li>Written Exam (/140 or 70%) </li></ul></ul>
  3. 3. Computer Systems <ul><li>5 units in the Computer Systems Section </li></ul><ul><ul><li>Data Representation = 6 hours </li></ul></ul><ul><ul><li>Computer Structure = 7 hours </li></ul></ul><ul><ul><li>Peripherals = 5 hours </li></ul></ul><ul><ul><li>Networking = 9 hours </li></ul></ul><ul><ul><li>Computer Software = 9 hours </li></ul></ul>
  4. 4. Aims of Lesson 1 <ul><li>How are numbers, text and images represented inside the computer system? </li></ul><ul><li>Discussing the 2 state computer system </li></ul><ul><li>Converting positive whole numbers to binary and vice versa </li></ul><ul><li>Playing Binary Bingo </li></ul>
  5. 5. Data Representation 100 billion switches per sq. cm
  6. 6. Data Storage <ul><li>Numbers, Text, and Images are all stored as a series of 1s and 0s inside the computer system. </li></ul><ul><li>These series of 1s and 0s are made up of pulses of electricity from 1 volt to 5 volts </li></ul>
  7. 7. Decimal Counting System <ul><li>When we represent numbers we use the decimal counting system, for example </li></ul><ul><li>123,000 </li></ul><ul><li>100,000 10,000 1,000 100 10 1 </li></ul><ul><li>1 2 3 0 0 0 </li></ul><ul><li>Since the computer is 2 state, the binary counting system goes up by the power 2, rather than 10 i.e </li></ul><ul><li>256 128 64 32 16 8 4 2 1 </li></ul>
  8. 8. How Positive Whole Numbers are Stored <ul><li>34 </li></ul><ul><li>128 64 32 16 8 4 2 1 </li></ul><ul><li>0 0 1 0 0 0 1 0 </li></ul><ul><li>= 32 + 2 </li></ul><ul><li>134 </li></ul><ul><li>128 64 32 16 8 4 2 1 </li></ul><ul><li>1 0 0 0 0 1 1 0 </li></ul><ul><li>= 128 + 4 + 2 </li></ul>
  9. 9. Binary back to Decimal <ul><li>1011 0011 </li></ul><ul><li>128 64 32 16 8 4 2 1 </li></ul><ul><li>1 0 1 1 0 0 1 1 </li></ul><ul><li>= 128 + 32 + 16 + 2 + 1 </li></ul><ul><li>= 179 </li></ul>
  10. 10. Binary to Decimal <ul><li>What is the decimal representation of the following 8 bits using 2s complement </li></ul><ul><li>(a) 0001 0110 </li></ul><ul><li>(b) 1000 1100 </li></ul><ul><li>(c) 0111 0011 </li></ul><ul><li>What is the 8 bit representation of the following decimal numbers </li></ul><ul><li>(a) 174 </li></ul><ul><li>(b) 121 </li></ul><ul><li>(c) 71 </li></ul>
  11. 11. Binary Bingo <ul><li>42 </li></ul><ul><li>81 </li></ul><ul><li>21 </li></ul><ul><li>16 </li></ul><ul><li>121 </li></ul><ul><li>73 </li></ul><ul><li>101 </li></ul><ul><li>75 </li></ul><ul><li>127 </li></ul><ul><li>13 </li></ul><ul><li>209 </li></ul><ul><li>32 </li></ul><ul><li>56 </li></ul><ul><li>175 </li></ul><ul><li>192 </li></ul><ul><li>186 </li></ul><ul><li>176 </li></ul><ul><li>121 </li></ul>
  12. 12. Data Storage <ul><li>1 or 0 = 1 bit </li></ul><ul><li>8 bits = 1 byte </li></ul><ul><li>1024 bytes = 1 kilobyte </li></ul><ul><li>1024 kilobytes = 1 megabyte </li></ul><ul><li>1024 megabytes = 1 gigabyte </li></ul>
  13. 13. Aims of Lesson 2 <ul><li>Representation of negative whole numbers </li></ul><ul><li>The 2s complement system </li></ul>
  14. 14. Representing Negative Numbers <ul><li>The signed bit method </li></ul><ul><li>0000 0001 = 1 </li></ul><ul><li>0000 0000 = 0 </li></ul><ul><li>1000 0001 = -1 </li></ul><ul><li>1000 0010 = -2 </li></ul><ul><li>1000 0011 = -3 </li></ul><ul><li>1000 0100 = -4 </li></ul>
  15. 15. Representing Negative Numbers <ul><li>There is a problem with this method?? </li></ul><ul><li>Using 8 bits you can only store the decimal numbers from </li></ul><ul><li>128 64 32 16 8 4 2 1 </li></ul><ul><li>1 1 1 1 1 1 1 1 </li></ul><ul><li>= 64 +32+16+8+4+2+1 = -127 </li></ul><ul><li>128 64 32 16 8 4 2 1 </li></ul><ul><li>0 1 1 1 1 1 1 1 </li></ul><ul><li>=64+32+16+8+4+2+1=127 </li></ul><ul><li>Rather than -255 to 255 </li></ul>
  16. 16. 2s Complement <ul><li>What is the 8 bit two’s complement representation of the decimal number -101 </li></ul><ul><li>101 </li></ul><ul><li>128 64 32 16 8 4 2 1 </li></ul><ul><li>0 1 1 0 0 1 0 1 </li></ul><ul><li>Invert numbers </li></ul><ul><li>1 0 0 1 1 0 1 0 </li></ul><ul><li>+1 </li></ul><ul><li>-101 </li></ul><ul><li>1 0 0 1 1 0 1 1 </li></ul>
  17. 17. Negative Whole Numbers <ul><li>What is the decimal representation of the following 8 bits using 2s complement </li></ul><ul><li>1 0 1 0 1 1 1 1 </li></ul><ul><li>You invert every number </li></ul><ul><li>0 1 0 1 0 0 0 0 </li></ul><ul><li>Then add 1 </li></ul><ul><li>0 1 0 1 0 0 0 1 </li></ul><ul><li>128 64 32 16 8 4 2 1 </li></ul><ul><li>64+16+1 </li></ul><ul><li>-81 </li></ul>
  18. 18. 2s Complement Questions <ul><li>What is the decimal representation of the following 8 bits using 2s complement </li></ul><ul><li>(a) 1000 1011 </li></ul><ul><li>(b) 1100 1100 </li></ul><ul><li>(c) 1001 0111 </li></ul><ul><li>(d) 1110 1100 </li></ul><ul><li>What is the 8 bit two’s complement representation of the following decimal numbers </li></ul><ul><li>(a) -45 </li></ul><ul><li>(b) -121 </li></ul><ul><li>(c) -176 </li></ul><ul><li>(d) -71 </li></ul>
  19. 19. Aims of Lesson 3 <ul><li>So far we have looked at representing positive and negative whole numbers using binary </li></ul><ul><li>We are now going to look at the representation of non whole numbers using the floating point system </li></ul>
  20. 20. Representing Non Whole Numbers <ul><li>How do we represent the number 128.75 in binary? </li></ul><ul><li>128 + 0.5 + 0.25 </li></ul><ul><li>= 128.75 </li></ul>128 64 32 16 8 4 2 1 0.5 0.25 0.125 0.0625 1 0 0 0 0 0 0 0 1 1 0 0
  21. 21. Mantissa and Exponent <ul><li>Mantissa </li></ul><ul><li>Exponent </li></ul><ul><li>8 </li></ul><ul><li>8 4 2 1 </li></ul><ul><li>1 0 0 0 </li></ul>128 64 32 16 8 4 2 1 0.5 0.25 0.125 0.0625 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0
  22. 22. <ul><li>Mantissa </li></ul><ul><li>Exponent </li></ul><ul><li>6 </li></ul><ul><li>8 4 2 1 </li></ul><ul><li>0 1 1 0 </li></ul>1 0 0 1 1 0 0 0 1 0 1 0 0 1 1 0 0 0 1 0 How do we represent the number 38.125 using floating point 32 16 8 4 2 1 0.5 0.25 0.125 0.0625
  23. 23. Representing Non Whole Numbers <ul><li>Mantissa relates to the precision of the number you can represent i.e 34.44454321 </li></ul><ul><li>Exponent relates to the range of the number </li></ul><ul><li>1111 = 15 </li></ul><ul><li>1111 1111 = 255 </li></ul>8 4 2 1 0.5 0.25 0.125 0.075 0.0375 0.01875 0.009375
  24. 24. <ul><li>What is the decimal number if the Mantissa is </li></ul><ul><li>10010011 and the exponent is 0101 </li></ul><ul><li>Exponent </li></ul><ul><li>8 4 2 1 </li></ul><ul><li>0 1 0 1 </li></ul><ul><li>= 5 </li></ul><ul><li>Mantissa </li></ul><ul><li>1 0 0 1 0 0 1 1 </li></ul>Mantissa and Exponent 16 8 4 2 1 0.5 0.25 0.125 16 + 2 + 0.25 + 0.125 = 18.375
  25. 25. Aims of Lesson 4 <ul><li>So far we have looked at representing positive and negative whole numbers using binary </li></ul><ul><li>We have also looked at representing non whole numbers using floating point. </li></ul><ul><li>Today we are going to practice converting storage capacities from bit, byte, kilobyte, megabyte, gigabyte, terabyte </li></ul><ul><li>Discuss how text is represented in a computer system </li></ul>
  26. 26. Storage Capacities 0 or 1 = 1 bit 8 bits = 1 byte 1024 bytes = 1 Kilobyte 1024 Kilobytes = 1 Megabyte 1024 Megabytes = 1 Gigabyte 1024 Gigabytes = 1 Terabyte
  27. 27. Storage Conversions <ul><li>I have a 2 Gigabyte IPOD Classic. How many 512Kb songs can I store on the IPOD? </li></ul><ul><li>Convert 2Gb to Kb </li></ul><ul><li>2 X 1024 = 2048Mb </li></ul><ul><li>2048 X 1024 = 2,097,152Kb </li></ul><ul><li>512Kb </li></ul><ul><li>4096 Songs </li></ul>
  28. 28. Storage Conversion Questions <ul><li>I have a memory card for a Digital Camera with a capacity of 4Gb. How many 460Kb images can I store on the memory card? </li></ul><ul><li>Mr Haggarty has recently been working as a DJ at weekends. He has bought an external hard disk to back up songs. How many 4Mb songs would he be able to fit on the 80Gb hard disk? </li></ul>
  29. 29. Solutions <ul><li>4Gb X 1024 = 4096Mb </li></ul><ul><li>4096 X 1024 = 4,194,304Kb </li></ul><ul><li> 460Kb </li></ul><ul><li>= 9118 images </li></ul><ul><li>80Gb X 1024 = 81920Mb </li></ul><ul><li>4Mb </li></ul><ul><li>= 20,480 songs </li></ul>
  30. 30. How is Text Represented <ul><li>ASCII </li></ul><ul><ul><li>Each key on the keyboard is converted into a binary code using 7 bits </li></ul></ul><ul><ul><li>Using 7 bits i.e 2 = 128 characters can be represented </li></ul></ul><ul><li>Character Set </li></ul><ul><ul><li>A list of all the characters which the computer can process </li></ul></ul><ul><li>Control Characters </li></ul><ul><ul><li>Codes 0 to 31 are non printable characters </li></ul></ul>7 97 110 0001 a 65 100 0001 A 49 011 0001 1 34 010 0010 ‘ 33 010 0001 ! 32 010 0000 space 13 000 1101 return 9 000 1001 tab Decimal Binary Character
  31. 31. How is Text Represented <ul><li>Unicode (Universal Code) </li></ul><ul><ul><li>Each key on the keyboard is converted into a binary code using 16 bits </li></ul></ul><ul><ul><li>Using 16 bits i.e 2 = 65,536 characters can be represented </li></ul></ul><ul><ul><li>Can represent Latin, Roman, Japanese characters </li></ul></ul><ul><li>Advantages </li></ul><ul><ul><li>More characters can be represented </li></ul></ul><ul><li>Disadvantages </li></ul><ul><ul><li>Takes up more than twice as much space for each character </li></ul></ul>16
  32. 32. Aims of Lesson 5 <ul><li>Last Lessons </li></ul><ul><li>Representing positive whole numbers as binary </li></ul><ul><li>Representing negative whole numbers using 2s complement </li></ul><ul><li>Non whole numbers using mantissa and exponent </li></ul><ul><li>Storage calculations </li></ul><ul><li>Looked at how text is represented using ASCII and Unicode </li></ul><ul><li>Today’s Lesson </li></ul><ul><li>Discuss graphic representation </li></ul><ul><li>Calculate storage capacities of colour Bit Map graphics </li></ul><ul><li>Bit Map v Vector </li></ul>
  33. 33. BIT Map Graphics SCREEN MEMORY PIXEL MEMORY REQUIRED 8 BITS X 8 BITS = 64 BITS = 8 BYTES Bit Map = the graphic is made up from a series of pixels
  34. 34. Graphics Resolution <ul><li>The smaller the size of the pixels, the finer the detail of the image </li></ul><ul><li>800 x 600 pixels lower quality than 1024 x 768 </li></ul><ul><li>As the number of pixels increases so does the storage space required </li></ul>Pixel Pattern using 8x8 grid Pixel Pattern using 16x16 grid
  35. 35. Calculating Storage Capacities of Bit Mapped Images <ul><li>Storage Requirements = total number of pixels * number of bits used for each pixel </li></ul><ul><li>This picture of Mr Haggarty has a resolution of 300dpi. The image is 2 inches by 4 inches in 128 colours </li></ul><ul><li>300 X 2 = width 600 pixels </li></ul><ul><li>300 X 4 = height 1200 pixels </li></ul><ul><li>Total pixels = 600 X 1200 = 720,000 pixels </li></ul><ul><li>Each pixel = 7 bits i.e. 2 = 128 colours </li></ul><ul><li>720,000 X 7 = 5,040,000 bits / 8 = 630,000 bytes </li></ul><ul><li>630,000 / 1024 = 615Kb </li></ul>7
  36. 36. Bit Map V Vector Graphics <ul><li>Bit Map Graphic </li></ul><ul><ul><li>Bit map packages paint pictures by changing the colour of the pixels </li></ul></ul><ul><ul><li>Known as “Paint Packages” </li></ul></ul><ul><ul><li>When shapes overlap, the one on top rubs out the other </li></ul></ul><ul><ul><li>When you save a file the whole screen is saved </li></ul></ul><ul><ul><li>The resolution of the image is fixed when you create the image </li></ul></ul><ul><li>Vector Graphic </li></ul><ul><ul><li>Work by drawing objects on the screen </li></ul></ul><ul><ul><li>Known as “Draw Packages” </li></ul></ul><ul><ul><li>When shapes overlap they remain as separate objects </li></ul></ul><ul><ul><li>Only the object attributes are stored taking up much less space </li></ul></ul><ul><ul><li>Resolution Independent </li></ul></ul>
  37. 37. Aims of Lesson 6 <ul><li>Last Lessons </li></ul><ul><li>Representing positive whole numbers as binary </li></ul><ul><li>Representing negative whole numbers using 2s complement </li></ul><ul><li>Non whole numbers using mantissa and exponent </li></ul><ul><li>Storage calculations </li></ul><ul><li>Looked at how text is represented using ASCII and Unicode </li></ul><ul><li>Discuss graphic representation </li></ul><ul><li>Calculate storage capacities of colour Bit Map graphics </li></ul><ul><li>Bit Map v Vector </li></ul><ul><li>Today’s Lesson </li></ul><ul><li>Discuss true colour </li></ul><ul><li>Today’s Tasks </li></ul><ul><li>Complete Data Representation Questions </li></ul><ul><li>Read chapter in the book </li></ul>
  38. 38. True Colour <ul><li>Bit Depth (Colour Depth) </li></ul><ul><ul><li>The number of bits used to represent colours in the graphic </li></ul></ul><ul><ul><ul><li>1 bit = black or white </li></ul></ul></ul><ul><ul><ul><li>2 bits = 4 colours </li></ul></ul></ul><ul><ul><ul><li>3 bits = 8 colours </li></ul></ul></ul><ul><ul><ul><li>8 bits = 256 colours </li></ul></ul></ul><ul><ul><ul><li>24 bits = 16,777,216 colours this is true colour </li></ul></ul></ul><ul><li>True Colour </li></ul><ul><ul><li>24 bits </li></ul></ul><ul><ul><ul><li>8 bits for red </li></ul></ul></ul><ul><ul><ul><li>8 bits for blue </li></ul></ul></ul><ul><ul><ul><li>8 bits for green </li></ul></ul></ul>Bit Depth = 1 bit Human eye cannot distinguish between adjacent shades of grey when looking at more than 200 shades between black and white Bit Depth = 2 bit
  39. 39. Bit Depths Bit Depth = 2 bits 01 10 11 00
  40. 40. Solutions <ul><li>Question 1 </li></ul><ul><li>2 inches X 90 = 180 pixels </li></ul><ul><li>2 inches X 90 = 180 pixels </li></ul><ul><li>180 X 180 = 32,400 pixels in total </li></ul><ul><li>256 colours = 2 power 8 </li></ul><ul><li>32,400 X 8 = 259,200 bits </li></ul><ul><li>259,200/8 = 32,400 bytes </li></ul><ul><li>32,400 / 1024 = 31.6Kb </li></ul><ul><li>Question 2 </li></ul><ul><li>5 inches X 200 = 1000 pixels </li></ul><ul><li>3 inches X 200 = 600 pixels </li></ul><ul><li>1000 X 600 = 600,000 pixels in total </li></ul><ul><li>128 colours = 2 power 7 </li></ul><ul><li>600,000 X 7 = 4,200,000 bits </li></ul><ul><li>4,200,000/8 = 525,000 bytes </li></ul><ul><li>525,000 / 1024 = 512.7Kb </li></ul>
  41. 41. Aims of Lesson 7 <ul><li>Last Lessons </li></ul><ul><li>Representing positive whole numbers as binary </li></ul><ul><li>Representing negative whole numbers using 2s complement </li></ul><ul><li>Non whole numbers using mantissa and exponent </li></ul><ul><li>Storage calculations </li></ul><ul><li>Looked at how text is represented using ASCII and Unicode </li></ul><ul><li>Discuss graphic representation </li></ul><ul><li>Calculate storage capacities of colour Bit Map graphics </li></ul><ul><li>Bit Map v Vector </li></ul><ul><li>True Colour </li></ul><ul><li>Today’s Lesson </li></ul><ul><li>Data Compression </li></ul><ul><li>Today’s Tasks </li></ul><ul><li>Complete Compression task </li></ul><ul><li>Issue Scholar logins </li></ul><ul><li>Complete Data Representation Questions Sheet </li></ul><ul><li>Read chapter in the book </li></ul>
  42. 42. Compression <ul><li>Data compression means reducing the size of a file in order to save backing storage space. </li></ul><ul><li>2 types of compression </li></ul><ul><ul><li>Lossless compression </li></ul></ul><ul><ul><li>Lossy compression </li></ul></ul>
  43. 43. Lossless Compression <ul><li>Lossless means that none of the original data is lost </li></ul><ul><li>One method of lossless compression involves counting repeating pixels </li></ul>COLOUR = 10011000 11100000 e.g. 16 bits NUMBER OF THE SAME PIXELS = 32 100000 STORAGE REQUIRED = 16 BITS + 6 BITS = 22 BITS
  44. 44. Lossy Compression <ul><li>Lossy compression involves sacrificing some of the data in order to reduce the file size </li></ul><ul><li>Deliberately losing some types of information that our eyes and brains usually ignore </li></ul><ul><li>Lossy is only suitable if the loss of data will not cause the file to become useless </li></ul><ul><li>JPEG is a file format that uses lossy compression to reduce file sizes </li></ul>
  45. 45. Data Representation – Learning Aims <ul><li>Representation of positive numbers in binary up to 32 bits </li></ul><ul><li>Conversion from binary to decimal and vice versa </li></ul><ul><li>Representation of negative numbers using 2s complement </li></ul><ul><li>Representation of non whole numbers using floating point with mantissa and exponent </li></ul><ul><li>Conversion to and from bit, byte, kilobyte, megabyte, gigabyte, terabyte </li></ul>
  46. 46. Data Representation – Learning Aims <ul><li>Unicode and its advantages over ASCII </li></ul><ul><li>Description of the bit map method of graphics representation </li></ul><ul><li>Description of the relationship between bit depth and the number of colours represented up to 24 bit depth </li></ul><ul><li>Vector graphics </li></ul><ul><li>Relationship between bit depth and file size </li></ul>

×