Investigation of heat transfer through cnt composites focusing on conduction mode


Published on

  • Be the first to comment

  • Be the first to like this

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

Investigation of heat transfer through cnt composites focusing on conduction mode

  1. 1. INTERNATIONALMechanical Volume 4, Issue 1, January - February (2013) © IAEME– International Journal of Engineering and Technology (IJMET), ISSN 0976 JOURNAL OF MECHANICAL ENGINEERING 6340(Print), ISSN 0976 – 6359(Online) AND TECHNOLOGY (IJMET)ISSN 0976 – 6340 (Print)ISSN 0976 – 6359 (Online)Volume 4 Issue 1 January- February (2013), pp. 66-73 IJMET© IAEME: Impact Factor (2012): 3.8071 (Calculated by GISI) ©IAEME INVESTIGATION OF HEAT TRANSFER THROUGH CNT COMPOSITES-FOCUSING ON CONDUCTION MODE A.Saravananpandi Solairajana, Dr.G.Kalivarathanb a Research Scholar, CMJ University, Meghalaya, Shillong. b Principal/ PSN Institute of Technology and Science, Tirunelveli, Tamilnadu, Supervisor, CMJ University, Shillong. ABSTRACT Carbon nanotubes (CNTs) are generally consider for reasonable applications in electronic, optical, thermal management and energy conversion devices because of their outstanding properties. The electrical and mechanical properties of CNTs have been investigated to the core, while the thermal properties of CNTs are of interest in basic science as nanotubes are model systems for low-dimensional materials. However, for large scale technical applications, the manipulation of single nanotubes becomes impractical. Several groups have measured the thermal properties of millimeter sized thin CNT films and packed carbon fibers. Current efforts to exploit the attractive properties of carbon nanotubes have focused on macroscopic composites containing engineered or self-assembled arrays of CNTs. One route has been to order the CNTs through the interaction of an anisotropic liquid crystalline host while another route has been to grow the CNT within the ordered porous structures of a host matrix. Even though convection mode of heat transfer is predominant in nano composites, a modest attempt has been made to investigate the conduction mode of heat transfer also by focusing on thermal conductivity. Keywords: Thermal Conductivity, Thermal properties, Carbon nanotubes, Chemical vapor deposition, Anodic aluminum oxide 1.0 INTRODUCTION Numerous studies, mostly theoretical, have been recently conducted to understand the thermal properties of CNTs and assess their potential for applications. These theoretical investigations have indicated that single-wall CNTs (SWCNT) have the highest thermal 66
  2. 2. International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 –6340(Print), ISSN 0976 – 6359(Online) Volume 4, Issue 1, January - February (2013) © IAEMEconductivity along the long axis of the nanotube, predicted to be as high as 6600 W m−1 K−1at room temperature; three times that of diamond. The experimentally measured thermal conductivityof an individual multi-wall CNT (MWCNT) is reasonably consistent and was found to be 3000 W m−1K−1. However, thermal conductivity of a random film sample of SWCNT was reported to be only 35W m−1 K−1. For SWCNT bundles, the reported value of thermal conductivity was 150 W m−1 K−1.Thethermal conductivity of aligned MWCNTs samples was reported to range between 12 to 17 W m−1K−1 and even as low as 3 W m−1 K−1 . Other results found it somewhat higher near 27Wm−1 K−1. Anattempt to understand this wide variation of the measured thermal conductivity (and to a lesser extentthe specific heat) of MWCNTs evoked the existence of thermal boundary resistance as a possiblemechanism for the dramatically lower thermal conductivity of MWCNT bundles and films comparedto that of a single MWCNT. However, the situation remains unresolved.The measurements of the specific heat and effective thermal conductivity by an AC-calorimetrictechnique on composites containing random and aligned dense packing of carbon nanotubes areattempted. For the random film of CNTs, the heat flow is predominately perpendicular to the longnanotube axis while in the composites of aligned CNTs in dense packed nano-channels of anodicaluminum oxide (AAO) the heat flow is primarily along the long axis. The bulk powder graphite wasalso studied as a reference having a similar packing of nano-particles within an identical sample cellarrangement. The temperature scans ranged from 300 to 400 K for aligned MWCNTs in AAO, andrandomly oriented films of MWCNTs, SWCNTs, and graphite powder. In general, the temperaturedependence of the specific heat of randomly oriented films of MWCNTs and SWCNTs is similar withthat of bulk graphite powder. In contrast, the specific heat of aligned MWCNTs in AAO has weakertemperature dependence than bulk behavior above room temperature. The effective thermalconductivity of randomly oriented MWCNTs and SWCNTs is similar to that of powder graphite,exhibiting a maximum value near 364 K indicating the onset of boundary-phonon scattering. Theeffective thermal conductivity of the anisotropic MWCNTs increases smoothly with increasingtemperature and is indicative of the one-dimensional nature of the heat flow.2.0 SYNTHESIS OF CARBON NANOTUBES AND SAMPLES Multi-wall carbon nanotubes were synthesized by a chemical vapor deposition (CVD)technique in an AAO template. The AAO template was obtained by a two-step anodization process;details of which have been previously published. Briefly, the first-step anodization of aluminum(99.999 % pure, Electronic Space Products International) was carried out in a 0.3 Molar oxalic acidsolution under 40 V at 10 0C for 16 − 20 hr. The porous alumina layer formed during this firstanodization step was completely dissolved by chromic acid at 70 0C. The sample was then subjectedto a second anodization step under the same conditions as the first. The thickness of the porous anodicfilm was adjusted by varying the time of the second anodization step. The resulted AAO templatescan be further treated by acid etching to widen the nanopores. For the samples used in this work, thepore diameter was controlled to within 45−80 nm by varying the anodizing voltage and etching time.Cobalt particles, used as catalysts for the carbon nanotube growth, were electrochemically depositedat the bottom of the pores using AC electrolysis (14 V at 100 Hz) for 30 sec in an electrolyteconsisting of CoSO47H2O (240 g/L), HBO3 (40 g/L), and ascorbic acid (1 g/L). The ordered array ofnanotubes were grown by first reducing the catalyst by heating the cobalt-loaded templates in a tubefurnace at 550 0C for 4 hr under a CO flow (60 cm3 min−1). The CO flow was then replaced by amixture of 10 % acetylene in nitrogen at the same flow rate. In a typical synthesis, the acetylene flowwas maintained for 1 hr at 600 0C. The as-prepared MWCNTs embedded in the AAO template wereused as the aligned MWCNT sample. The MWCNTs can be released from the template by removingthe aluminum oxide in a 0.1 Molar NaOH solution at 60 − 80 0C for 3 hr. The released MWCNTswere used to make a randomly oriented MWCNT film sample. From a 3 cm2 MWCNT+AAOsample, 1.82 mg of MWCNTs was released corresponding to an embedded mass of MWCNT of 0.61mg cm−2. From the dimensional information of the MWCNT and assuming an AAO pore density ofabout 1010 cm−2, a theoretical value of the MWCNT mass per area of MWCNT AAO is 0.86 mg 67
  3. 3. International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 –6340(Print), ISSN 0976 – 6359(Online) Volume 4, Issue 1, January - February (2013) © IAEMEcm−2, reasonably close to the measured value. The mass of the MWCNTs embedded inside the AAOtemplate sample was thus estimated by using the measured mass of released CNTs per unit area ofcomposite. Single-wall carbon nanotubes (SWCNT) were obtained from Helix Material Solutions,used without further processing. The reference graphite powder was obtained from AGS and has thefollowing composition; 95.2 % carbon, 4.7 % ash, and 0.1 % moisture and other volatiles. Thegraphite powder was used after degassing at 100 0C under vacuum for 2 hr. Morphology of theMWCNTs, SWCNTs and graphite particles were examined by a JEOL JSM-7000F scanning electronmicroscope (SEM) and a Philips CM12 transmission electron microscope ( TEM) before thecalorimetric3.0 SAMPLE CELL CONFIGURATIONS The aligned MWCNT+AAO sample were in excellent thermal contact on one end by theiranchoring to the Al base of the AAO and contact on the other end was made to a thin silver sheet by athin layer of GE varnish (General Electric #7031 varnish). The typical thickness of MWCNT+AAOsample was about 20 µm. This aligned sample was arranged as a silver sheet/GEvarnish/MWCNT+AAO/Al sandwich. One side of the ‘stack’ has attached a 120 strain gauge heaterand the other a 1 M carbon-flake thermister. For the randomly oriented thin film samples, the powder-form MWCNTs, separately obtained SWCNTs, and graphite powders were drop cast on a thin silversheet then sandwiched by another identical silver sheet on top by a thin layer of GE varnish forming anearly identical ‘stack’ (in dimension and total mass) as the aligned sample. All components of allsample+cells were carefully massed in order to perform background subtractions. Figure 1: In (a) and (b), a cartoon depicting the sample cell configuration for the aligned MWCNT+AAO sample (a) and for the random film of MWCNT, SWCNT, or graphite powder samples (b). In (c) a typical TEM of a MWCNT is shown with the bar in the lower left of the micrograph representing 100 nm. Image analysis of such micrographs yield the geometric properties of the CNTs. 68
  4. 4. International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 –6340(Print), ISSN 0976 – 6359(Online) Volume 4, Issue 1, January - February (2013) © IAEME4.0 RESULTS AND DISCUSSION Scanning electron microscope images were taken of the samples studied. For thealigned MWCNT embedded in the AAO channels, the cross-section SEM that each channelcontains a well-confined MWCNT suggesting a very high filing fraction, with all thechannels and MWCNTs parallel to each other throughout the thickness of theMWCNT+AAO composite. As confirmed by previous studies, the outer diameter of theMWCNTs was determined by the 60 nm pore size of the AAO template. The analyzedtunneling electron micrographs, indicate that the inner diameter of the synthesized MWCNTwas 22±8 nm and the outer diameter 54±5 nm. The liberated MWCNTs thin films arerandomly oriented, laying flat with one on top of another. The randomly oriented SWCNTthin films appear to be highly entangled. Here, SWCNTs are approximately 1.3 nm indiameter Figure 2: SEM micrographs of arrays of MWCNTs inside AAO template (a) Released MWNTs from AAO template (b) SWCNTs (c) and graphite powder (d).MWCNTs are 20 µm long with 60 nm outside and 25 nm outer diameters.4.1 SPECIFIC HEAT OF CNT COMPOSITES The anisotropic measurement of specific heat (c||p) and randomly oriented specificheat (cMp ) for MWCNT, randomly oriented specific heat (cSp ) for SWCNT, and that of bulkgraphite powder (cBp ). The specific heat of all samples was determined as a function oftemperature from 300 to 400 K on heating. The bulk graphite powder sample yields a cB p =0.73 J g−1 K−1 at 300 K and a weak, nearly-linear, temperature dependence up to 360 Kreaching 0.80 J g−1 K−1. These values obtained from our experimental arrangements are 2.1%higher and 5.5% lower, respectively, from literature values and indicate in absolute valueuncertainty of about 5% (conservatively) and an uncertainty in slope of about 7%. Withsimilar temperature dependence. For the randomly oriented SWCNT thin film sample, cSp =0.72 J g−1 K−1 at 300 K and increases linearly up to 362 K similar to bulk graphite, but thenexhibits a much stronger temperature dependence up to 385 K, reaching cSp = 1.02 J g−1 K−1.There are few experimental or theoretical investigations of the specific heat or thermalconductivity reported in the literature at these high temperatures. One of the few, reported the 69
  5. 5. International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 –6340(Print), ISSN 0976 – 6359(Online) Volume 4, Issue 1, January - February (2013) © IAEMEspecific heat of a single aligned MWCNT at 300 K to be ≈ 0.5 J g−1 K−1 while similartemperature dependence up to 400 K have been observed. Several studies at lowertemperatures have shown that nanowires and nanotubes can have very different phonondispersion than in the bulk due to phonon confinement, wave-guiding effects, and increasedelastic modulus, that effectively determine phonon velocity Figure 3: The measured specific heat of bulk graphite powder (solid squares), SWCNT (open squares) and MWCNT (open circles) random thin film samples (labeled R), and aligned MWCNTs measured parallel to the long axis (solid circles - labeled A) from 300 to 400 K.It is expected that the magnitude of the specific heat of graphite and carbon nanotube sampleswould be the same at high temperatures, as seen from low temperatures up to 200 K. This isgenerally true for our results, to within 7% for the reference graphite powder and the randomfilms of SWCNT and MWCNT samples. Variations among these samples of the magnitudeof cp are likely due to the composite nature of the sample arrangement. However, thetemperature dependence of the aligned MWCNT in the AAO channels is much weaker thancan be explained by experimental uncertainties.4.2 THERMAL CONDUCTIVITY OF CNTS The effective thermal conductivity of bulk graphite powder, randomly oriented thinfilms of SWCNTs and MWCNTs (labeled with an R extension), as well as aligned arrays ofMWCNT in AAO (labeled with an A extension) from 300 to 400 K. The bulk graphite andMWCNT(R) samples are nearly identical up to about 360 K after which, near 365 K, a broadpeak is observed (slightly sharper for the graphite). The SWCNT(R) sample has a highermagnitude and weaker temperature dependence as bulk graphite and MWCNT(R) but reachesthe same magnitude at a broad peak or plateau near 365 K. These results are similar to abroad peak-like behavior in theThermal conductivity simulated with the heat flow perpendicular to the nanotube long axis.These results are also consistent with measurements for bulk powder cobalt and random thinfilms of cobalt nanowires. It is likely that the thermal conductivity of these structures overthis temperature range is dominated by phonon boundary scattering. Basically, the randomlyoriented thin films of CNTs behave similar to the graphite powder due to the large number 70
  6. 6. International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 –6340(Print), ISSN 0976 – 6359(Online) Volume 4, Issue 1, January - February (2013) © IAEMEparticle boundary contacts/junctions. The broad peak near 365 K can be understood as due tothe phonon-phonon bunching at these boundaries, which can cause a dramatic reduction ofthe thermal conductivity. For SWCNT(R) thin films, the effective thermal conductivity is 0.8W m−1 K−1 at 300 K and increases linearly up to 360 K, then its decreases slowly with furtherincreasing temperature. This is consistent with that observed by Hone’s group on a similarsample arrangement finding κ = 0.7 W m−1 K−1 at 300 K. The uncertainty of the absolutemagnitude depends strongly on the density of CNTs per unit area of film and the resultspresented here likely underestimate the true value. However, the larger magnitude of κ for theSWCNT(R) sample would be expected from the smaller diameter of the SWCNTs comparedto the studied MWCNTs or the size of the graphite powder particles. Figure 4: A semi-log plot of the derived effective thermal conductivity of bulk graphite powder (solid squares), random thin films of SWCNT (open squares) and MWCNT (open circles), as well as aligned MWCNT (solid circles) as function of temperature from 300 to 400 K.The effective thermal conductivity is greatly affected by the interface contact resistancebetween surfaces and sample as well as among the sample particles (nanotubes or graphitepowder). The results presented in this work reveal that the heat transfer in aligned nanotubesis dominated by the nanotube-nanotube interfacial resistance, nanotube length, diameter, andspacing. Paradoxically, the nanotube thermal resistance decreases with increasing nanotubelength. For aligned MWCNT+AAO, the heat flow is essentially one-dimensional across eachsingle nanotube, but their coupling to the AAO matrix and the cell surfaces leads to increasedthermal resistance. However, in the case of a randomly oriented thin film sample, thenanotube-nanotube resistance decreases due to the proliferation of contacts among nanotubesimproving the heat exchange. In all samples, the interfacial resistance also depends upon thegeometry of the contacting surfaces through surface roughness. Anharmonic phonons can becreated, destroyed or scattered from each other leading to a finite mean-free-path and so,limiting the thermal conductivity. 71
  7. 7. International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 –6340(Print), ISSN 0976 – 6359(Online) Volume 4, Issue 1, January - February (2013) © IAEME Figure 5: A semi-log plot of the effective thermal conductivity normalized to that determined for each sample at 300 K to reveal the fractional change as a function of temperature. Shown are the bulk graphite powder (solid squares), random thin films of SWCNT (open squares) and MWCNT (open circles), along with aligned MWCNT (solid circles) from 300 to 400 K.5.0 CONCLUSIONS In this work, experimental results of the specific heat and effective thermalconductivity of a macroscopic composite containing randomly oriented single-wall and multi-wall carbon nanotubes, graphite powder, and aligned multi-wall carbon nanotube embeddedin a porous aluminum matrix are reported from 300 to 400 K. The specific heat is generallyconsistent among all carbon samples with the graphite powder and random thin film ofMWCNT being most similar. The random thin film of SWCNT has a stronger while thealigned MWCNT in AAO has a weaker temperature dependence than the bulk behaviormeasured here. Though small, these differences are due to the intrinsic properties of SWCNTfor the former and the macroscopic arrangement in the composite for the latter sample. Theeffective thermal conductivity reveals the most striking effect of composite construction. Inall the random thin film samples of SWCNT, MWCNT, and graphite powder, a broad peaklike feature is seen in κ near 365 K, similar to that seen in similar cobalt-based composites.The absolute value of effective thermal conductivity measured here of the single-wall andmulti-wall CNTs are expected to be different because of their differences in length, diameter,and overall purity. Given that all three random thin film sample+cell configuration ofSWCNT(R), MWCNT(R), and graphite powder are nearly identical, the phonon-boundaryscattering mechanism is themost likely and the difference in absolute value is likely due to uncertainties in massapproximation and sample purity. These results on how the thermal properties of carbonnanotube composites vary with construction can be combined with the recent work of Hone’sgroup on the thermal conductivity for an unaligned SWCNT sample in the presence of amagnetic field finding ≈ 25 W m−1 K−1 at 300 K and increases with increasing temperatureuntil saturating at ≈ 35 W m−1 K−1 near 400 K. Thus, detailed engineering of thermalproperties is a strong possibility. 72
  8. 8. International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 –6340(Print), ISSN 0976 – 6359(Online) Volume 4, Issue 1, January - February (2013) © IAEMEREFERENCES[1] Ijima Sumio, Nature., 354, 8, No.56 (1991).[2] C. H. Olk and J. P. Heremans, J. Mater Res., 9, 259 (1994).[3] C. Dekker, Physics Today., 52, 22 (1999).[4] W. Yi, L. Lu, Z. Dian-Lin, Z. W. Pan and S. S. Xie, Phys. Rev. B., 59, R9015 (1999).[5] J. Hone, M. Whitney, C. Piskoti and A. Zettl, Phys. Rev. B., 59, R2514 (1999).[6] J. Hone, M. Whitney, C. Piskoti and A. Zettl, Synthetic Metals., 103, 2495 (1999).[7] J. Hone, B. Batlogg, Z. Benes, A. T. Johnson and J. E. Fischer,Science, 289, 1730 (2000).[8] J. Hone, M. C. Llaguno, N. M. Nemes, A. T. Johnson, J. E. Fisher, D. A. Walters, M. J.Casavant, J. Schmidt and R. E. Smalley, Appl. Phys. Lett., 77,, 666 (2000).[9] J. Hone, M. C. Llaguno, M. J. Biercuk, A. T. Johnson, B. Batlogg, Z. Benes and J. E.Fisher, Appl. Phys. A: Mater Sci. Process., 74, 339 (2002).[10] D. J. Yang, Q. Zhang, G. Chen, S. F. Yoon, J. Ahn, S. G. Wang, Q. Zhou, Q. Wang andJ. Q. Li, Phys. Rev. B., 66, 165440,(2002).[11] R. Basu and G. S. Iannacchione, Appl. Phys. Lett., 93, 183105 (2008).[12] N. R. Pradhan, D. Huanan, J. Liang and G. S. Iannacchione, Nanotechnology, 19, No.48,485712 (2008).[13] T. Tong, A. Majumdar, Y. Zhao, A. Akashi, L. Delzeit and M. Meyapan, IEEE., , 1406-1411 (2006).[14] K. Zhang, Y. Chai, M. M. F. Yuan, D. G. W. Xio and P. C. H. Chan, Nanotech- nology.,19, 215706 (2008).[15] Y. Xu, C. Leong, D. D. L. Chung, Journal of Electronic Materials., 36, No.9, 1181(2007).[16] Jong-Jin Park and M. Taya, Journal of Electronic Packaging, 128, 46, May (2006).[17] P. B. Amama, B. A. Cola, T. D. Sands, X. Xu and T. S. Fisher, Nanotechnology., 18,385303 (2007). [18] Cherian Paul and Parvathy Venugopal, “Modelling Of Interfacial Heat TransferCoefficient And Experimental Verification For Gravity Die Casting Of Aluminium Alloys”International Journal of Mechanical Engineering & Technology (IJMET), Volume 1, Issue 1,2010, pp. 253 - 274, Published by IAEME.[19] Kavitha T, Rajendran A, Durairajan A and Shanmugam A, “Heat Transfer EnhancementUsing Nano Fluids And Innovative Methods - An Overview” International Journal ofMechanical Engineering & Technology (IJMET), Volume 3, Issue 2, 2012, pp. 769 - 782,Published by IAEME.[20] Sunil Jamra, Pravin Kumar Singh and Pankaj Dubey, “Experimental Analysis Of HeatTransfer Enhancement in Circular Double Tube Heat Exchanger Using Inserts” InternationalJournal of Mechanical Engineering & Technology (IJMET), Volume 3, Issue 3, 2012, pp.306 - 314, Published by IAEME.[21] Manjunatha L.H. and P.Dinesh, “Development And Study On Microstructure, HardnessAnd Wear Properties Of As Cast, Heat Treated And Extruded CNT- Reinforced With 6061alMetal Matrix Composites” International Journal of Mechanical Engineering & Technology(IJMET), Volume 3, Issue 3, 2012, pp. 583 - 598, Published by IAEME. 73