International Journal JOURNAL OF ADVANCED RESEARCH Technology (IJARET),
INTERNATIONAL of Advanced Research in Engineering ...
International Journal of Advanced Research in Engineering and Technology (IJARET),
ISSN 0976 – 6480(Print), ISSN 0976 – 64...
International Journal of Advanced Research in Engineering and Technology (IJARET),
ISSN 0976 – 6480(Print), ISSN 0976 – 64...
International Journal of Advanced Research in Engineering and Technology (IJARET),
ISSN 0976 – 6480(Print), ISSN 0976 – 64...
International Journal of Advanced Research in Engineering and Technology (IJARET),
ISSN 0976 – 6480(Print), ISSN 0976 – 64...
International Journal of Advanced Research in Engineering and Technology (IJARET),
ISSN 0976 – 6480(Print), ISSN 0976 – 64...
Upcoming SlideShare
Loading in...5
×

20320140501001

110

Published on

Published in: Technology, Business
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
110
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
7
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Transcript of "20320140501001"

  1. 1. International Journal JOURNAL OF ADVANCED RESEARCH Technology (IJARET), INTERNATIONAL of Advanced Research in Engineering and IN ENGINEERING ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 1, January (2014), © IAEME AND TECHNOLOGY (IJARET) ISSN 0976 - 6480 (Print) ISSN 0976 - 6499 (Online) Volume 5, Issue 1, January (2014), pp. 01-06 © IAEME: www.iaeme.com/ijaret.asp Journal Impact Factor (2013): 5.8376 (Calculated by GISI) www.jifactor.com IJARET ©IAEME H2O2 AS ELECTRON ACCEPTOR IN DOUBLE CHAMBER MICROBIAL FUEL CELLS R. Y. Tamakloe, K. Singh, T. Opoku-Donkor Department of Physics, Kwame Nkrumah University Science and Technology Kumasi, Ghana ABSTRACT A variety of substrates have been explored relative to the anode substrate which takes the form of any wastewater with some amount of COD. Several modification methods have been developed to improve power generation at the anode level, but the cathode system and configuration have also been a challenge in most researches. The choice of cathode substrate is one of the greatest challenges in fabricating MFCs. In this study a DC-MFC with H2O2 cathode has been fabricated. A maximum voltage of 448 mV (OCV) for DC-MFC was observed at an ambient temperature of 25 oC which is much higher than 200 mV obtained from SC-MFC. Keywords: MFC = Microbial Fuel Cell; SC-MFC = Single Chambered MFC; DC-MFC = Double Chambered MFC; OCV = Open Circuit Voltage INTRODUCTION Recently, Opoku-Donkor et. al. [1] has studied oxygen as electron acceptor in SC-MFCs. The main challenge in constructing an MFC is first to identify materials and architectures that maximize power generation and coulombic efficiency, but the next challenge is to minimize cost and create architectures that are inherently scalable [2]. Logan et al have shown that power densities can be increased by choosing high-energy catholytes such as ferricyanide or permanganate, but concluded that the use of these materials are not sustainable or cost effective. In most MFCs oxygen is used as the electron acceptor and as such all cathodic substrates is selected to achieve maximum acceptor level. The model performance of a MFC depends on the electrochemical reactions that take place between the organic substrate at a low potential such as glucose and the final electron acceptor with a high potential, such as oxygen [3]. However, its model cell voltage is vague because the electrons are transferred to the anode from the organic substrate through a complex respiratory chain that varies from microbe to microbe and even for the same microbe when growth conditions differ. Though the 1
  2. 2. International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 1, January (2014), © IAEME respiratory chain is still inadequately understood, the key anodic reaction that determines the voltage is between the reduced redox potential of the mediator or the final cytochrome in the system for the electrophile/anodophile. For those bacterial type that are not capable of releasing electrons to the anode directly, a redox mediator is needed to transfer the electrons directly to the anode [4].The search for anode substrate is still on-going, although species such as Geobacter sulfurreducens, is speculated to form an electrical conductive biofilm capable of electron transfer in the system a replacement would be necessary. In this study we chose to experiment diluted H2O2 at the cathode chamber. The composition of the oxidation chamber, as done by Borah et al [5] was phosphate buffer. Their maximum voltage was found to be 440 mV. Others have tried ferricyanide and ferric sulfate in solution. Devasahayan et al, have used ferricyanide in their 4 phased studies as oxidation agent to produce voltage between 285 to 779 V [6]. Park and Zeikus (2003) examined power generation using a single-chamber system with a Fe3+ -graphite cathodes exposed to air and had the current density of 788 mW/m2, but were not sure whether iron reduction contributed to power generation [7]. The main objective of this study is to replace mixture of chemicals, with a simple sourced cathodic substrate which is H2O2. MATERIALS AND METHODS Two cells were constructed with each cell volume of 1.8 L. Both SC-MFC and DC-MFC have PEM as the partition (Fig. 1a and 1b). Fig. 1: a) Single-Chamber MFC b) Double-Chamber MFC The anode electrode for the SC-MFC is 6 cm from the PEM and the two electrodes in the DC-MFC, each 9.5 cm apart from the PEM. We used only two types of substrates: Domestic wastewater as anodic substrate and Hydrogen Peroxide as cathodic substrate. We assumed H2O2 has excess oxygen to share with the outflow of hydrogen from the anode. The electrodes are of graphite and submerged surface area of 87.6 cm2. 2
  3. 3. International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 1, January (2014), © IAEME WASTEWATER Wastewater was collected from a Wastewater Treatment Plant (KNUST, Kumasi - Ghana). This is wastewater coming from the university halls of residence containing faecal, urine, kitchen liquid, bath and others. COD was 1275 mg/L as measured at the GGBL. H2O2 was bought from a nearby chemical store in 200 mL bottles (ECL’S, Solution of Hydrogen Peroxide B.P. 20 Volumes – Contains 6% w/v of H2O2 with a stabilizer, made in Ghana by Ernest Chemists Ltd.). This was then diluted to 1:4 by part with distilled water. For physics point of view we thought any substrate that readily accept hydrogen from the anode through the cathode exchange membrane can be used, so we selected H2O2 which is readily available in nearby chemical shops. We therefore considered its strong oxidizing property. HYDROGEN PEROXIDE - H2O2 Hydrogen peroxide is the simplest peroxide. It is also a strong oxidizer. Hydrogen peroxide is a clear liquid, slightly more viscous than water. In dilute solution, it appears colorless. Formula: 2(HO) Density: 1.45 g/cm³ Melting point: -0.43 °C Boiling point: 150.2 °C IUPAC ID: dihydrogen dioxide Molar mass: 34.0147 g/mol This was to 1:4 by part with distilled water. [8] PROTON EXCHANGE MEMBRANE (PEM) The partition has been made from Nafion117. This was taken through the usual washing and pressed onto the container by means of bolt and nuts to make it water-tight for both single and double chamber MFC (Fig.1a and 1b) Single Chamber Cell We used graphite rod inside the anode substrate connected to cupper conductor outside. Air cathode through platinum doped carbon paper bridged to a cupper strip conductor (Fig. 1a). Double Chamber Cell Graphite rods of dimension 1.2 cm x 3 cm x 10 cm were used in both chambers, thus making the submerged surface area of 87.6 cm2 as shown in Fig. 1b. RESULTS AND DISCUSSION In order to compare the performance of the two cells, both MFCs were operated under ambient conditions; same temperature and pressure (25 ± 0.5, 1 atm). The cells were connected to the Campbell Scientific Datalogger (CR10X) to measure the differential voltage. Data from the two cells were collected every minute for 30 days. Significant portions of the data are shown Fig. 2. The DC-MFC with H2O2 cathode performed better and comparatively much higher OCV than SC-MFC using air cathode. Polarization curves were obtained by varying external resistances from 0 to 10,000 . Voltage and current in the MFC were measured with a Digital Multimeter (Peak Tech® 2010DMM). 3
  4. 4. International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 1, January (2014), © IAEME Fig. 3 indicates that generation of current in the double chamber cell is much higher in a relation to the use of H2O2 as an oxidizer. Fig. 2. Electricity generation by single-chamber and double-chamber MFCs Fig. 3. Variation of Cell Voltage with external resistance The variation of of cell voltage with current density are also shown in Fig. 4. This is based on the fact that the PEM operation surface areas and substrate volumes were the same for both cells. The maximum power occurred at 7.57 mW (6008 mW/m2 base on the operational PEM area) for DC-MFC and 0.46 mW (367 mW/m2 base on the operational PEM area) for SC-MFC respectively. The peak power was obtained at an external resistance of 5000 and 7000 for DC-MFC and SCMFC respectively. This means the internal resistances are equivalent to 5000 for DC-MFC and 7000 for SC-MFC as well. Although the distance between the PEM and electrodes for DC-MFC (9.5 cm) is more than that for SC-MFC the cation affinity of H2O2 on the cathode side tends to minimize the internal resistance of DC-MFC as in Fig. 5. 4
  5. 5. International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 1, January (2014), © IAEME Fig. 4 Variation of cell voltage with current density Coulombic Efficiency (CE) for DC-MFC = 9.20 % and for SC-MFC = 1.88 % based on the method proposed by Logan [9]. The efficiency for DC-MFC is thus about 5 times higher than SCMFC. This indicated that the maximum power produced was as a result of the cathodic H2O2 as portrayed the graphs. Fig. 5 Variation of power with current density CONCLUSION The difference between the two cells is that SC-MFC takes oxygen directly from the atmosphere and the DC-MFC derives oxidation from the H2O2. As the anode substrates are from the same source in SC-MFC as well as in DC-MFC, one can conclude that H2O2 might have accounted for the increment in power production. 5
  6. 6. International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 1, January (2014), © IAEME ACKNOWLEDGEMENTS Our sincerest acknowledgement goes to GGBL, Kumasi, Ghana for their invaluable service in terms of COD measurement. We also thank Dr. Young-Gi Yoo of Korea Institute of Energy Research for providing platinum doped carbon paper, and Head of Physics Department, KNUST for the use of laboratory facilities for this work. REFERENCE [1] T. Opoku-Donkor, R. Y. Tamakloe, R. K. Nkum and K. Singh, Effect of COD on OCV, Power production and Coulombic Efficiency of Single-Chambered Microbial Fuel Cells, Volume 4, Issue 7, November - December 2013, pp. 198-206. [2] B. E. Logan, Microbial Fuel Cells, John Wiley & Sons, Inc, 61. (2008) [3] K. Rabaey., P. Clauwaert, W. Verstraete, Tubular microbial fuel cell for efficient electricity generation. Environ. Sci. Technol. 39, 8077–8082 (2005). [4] G.M. Delaney, H.P. Bennetto, J.R. Mason, S.D. Roller, J.L. Stirling and C.F.Thurston, “Electron-transfer coupling in microbial fuel cells. 2. Performance of fuel cells containing selected microorganism-mediator-substrate combinations,” J. Chem. Technol. Biotechnol., 34 B(1), 13- 27 (1984). [5] Borah, D. More, S. and Yadav, R.N.S. (2013) Construction of Double Chambered Microbial Fuel Cell (MFC) Using Household Materials and Bacillus megaterium Isolate from Tea Garden Soil. Advances in Biological Research 7 (5): 136-140, [6] M. Devasahayan, and S. A. Masih, (2012) Microbial fuel cells demonstrate high coulombic efficiency applicable for water remediation. Indian Journal of Experimental Biology. Vol.50, June 2012 pp 430-438 [7] D.H Park,. and J.G. Zeikus, (2003) Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol. Bioengin. 8 1 (3), 348-355. [8] http://en.wikipedia.org/wiki/Hydrogen_peroxide, 10/12/2013 [9] B. E. Logan, Microbial Fuel Cells, 48 (2008). [10] Chonde Sonal G, Mishra A. S. and Raut P.D., “Bioelectricity Production from Wastewater using Microbial Fuel Cell (MFC)”, International Journal of Advanced Research in Engineering & Technology (IJARET), Volume 4, Issue 6, 2013, pp. 62 - 69, ISSN Print: 0976-6480, ISSN Online: 0976-6499. [11] T. Opoku-Donkor, R. Y. Tamakloe, R. K. Nkum and K. Singh, “Effect of Cod on OCV, Power Production and Coulombic Efficiency of Single-Chambered Microbial Fuel Cells”, International Journal of Advanced Research in Engineering & Technology (IJARET), Volume 4, Issue 7, 2013, pp. 198 - 206, ISSN Print: 0976-6480, ISSN Online: 0976-6499. 6

×