Jv r hsb antwerpen dec 2010

1,158 views
964 views

Published on

Jeroen van Reenen, aspects of surveying in the Port of Rotterdam

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,158
On SlideShare
0
From Embeds
0
Number of Embeds
152
Actions
Shares
0
Downloads
22
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Jv r hsb antwerpen dec 2010

  1. 1. Navigational depth Best practice in Rotterdam approaches Jeroen van Reenen
  2. 2. Navigational depth <ul><li>Port environment </li></ul><ul><li>Dredging mangement </li></ul><ul><li>Navigational depth </li></ul><ul><li>Density surveying </li></ul><ul><li>Investigation surveys </li></ul><ul><li>Research siltation in Rotterdam ports </li></ul>
  3. 3. <ul><li>River estuary </li></ul><ul><li>Tidal water </li></ul><ul><li>River discharge </li></ul><ul><li>Salt water currents </li></ul><ul><li>Storms </li></ul>1 Port Environment
  4. 7. 2 Dredging management <ul><li>By area </li></ul><ul><li>By organisation </li></ul><ul><li>By contract </li></ul><ul><li>By dredging equipment </li></ul><ul><li>By navigational depth definition / measurements </li></ul>
  5. 8. Port of Rotterdam / Rijkswaterstaat
  6. 9. Dredging contract type <ul><li>TDS based </li></ul><ul><li>Time based </li></ul><ul><li>Combination TDS/Time </li></ul><ul><li>Lum sum contract </li></ul>
  7. 10. Dredging equipment <ul><li>Size of hopper dredgers </li></ul><ul><li>Submersible pump </li></ul><ul><li>Use of plough vessel </li></ul>
  8. 11. 3 Navigational depth <ul><li>Fluid mud </li></ul><ul><li>Measurement systems </li></ul><ul><li>Data processing / charting </li></ul>
  9. 12. Navigational depth parameters <ul><li>Viscosity [N*s / m 2 ] </li></ul><ul><li>Sheer stress [N / m 2 ] </li></ul><ul><li>Density [kg / m 3 ] </li></ul><ul><li>PIANC (1983) </li></ul><ul><li>1) The ship’s hull must suffer no damage even if its draught reaches the full navigable depth </li></ul><ul><li>2) The navigation response of the vessel must not be adversely affected </li></ul>
  10. 13. Minimum UKC Berge Stahl 343 m long 63 m wide 365.000 T 354.000 T @ 23m 3 deg roll, 1.65m
  11. 14. Rotterdam definitions <ul><li>Navigational depth at 1200 g/l density level </li></ul><ul><li>Multibeam echosounding for “top of siltation layer” </li></ul><ul><li>Assuming top of siltation 1030 g/l </li></ul><ul><li>Density measurment to detect layer 1030-1200 g/l </li></ul>
  12. 15. 4 Density surveying Echosounder depth 1.2 T/m3 depth
  13. 16. Density measurments <ul><li>Weight </li></ul><ul><li>Radio active counting </li></ul><ul><li>Tuning fork </li></ul><ul><li>Acoustics </li></ul>
  14. 17. DensiTune <ul><li>Tuning fork technique </li></ul><ul><li>Fluid mud layer detection up to 1250 gr/l </li></ul>
  15. 18. Density-depth chart <ul><li>1030 g/l: 23.25 m </li></ul><ul><li>1200 g/l: 23.47 m </li></ul><ul><li>Density layer: 0.22 m </li></ul>
  16. 19. DensiTune point export
  17. 20. DensiTune Calibration <ul><li>Get a representative local fluid mud sample </li></ul><ul><li>If density is not over 1200 g/l give time to settle </li></ul><ul><li>Drain water </li></ul><ul><li>No more stirring than necessary to get a homogeneous sample </li></ul><ul><li>Min. 5 different density measurements by adding sea water to sample material </li></ul>
  18. 21. Van Veen grab
  19. 22. Calibration barrel
  20. 23. DensiTune calibration
  21. 24. Check on measurements against calibration
  22. 25. Point measurements
  23. 26. TIN model
  24. 27. Isopach DTM
  25. 28. SILAS raw data Digital 200 KHz SILAS 1.2 density Echo “noise”
  26. 29. Calibration of Silas
  27. 30. Singlebeam tracks
  28. 31. Monitor tracks
  29. 32. Long sections
  30. 33. Authority boundary
  31. 34. Multibeam depth (240 KHz)
  32. 35. Navigational depth (1200 g/l)
  33. 36. Navitracker <ul><li>Nucleair system </li></ul><ul><li>Used verticale </li></ul>
  34. 37. Slib tank Antwerpen tests <ul><li>Check accuracy of DensiTune system </li></ul><ul><li>Check on accuracy of Silas system </li></ul>
  35. 39. DensiTune results
  36. 40. Silas results
  37. 41. New development undisturbed bottom sampling <ul><li>Based on standard Beeker-sampler </li></ul><ul><li>Free fall triggering </li></ul><ul><li>Altitude and attitude monitoring </li></ul><ul><li>Density measurement by Anton Paar calibrated instrument </li></ul><ul><li>Convert sample profile data for Silas echosounder calibration </li></ul>
  38. 42. Free fall Beeker sampler
  39. 43. Sample density measurement
  40. 44. 5 Siltprofiler surveys <ul><li>Water column profiling </li></ul><ul><li>Current measurements </li></ul><ul><li>Water samples for calibration </li></ul>
  41. 45. Siltprofiler
  42. 46. OBS data
  43. 47. 6 Research siltation Forces of nature <ul><li>Current </li></ul><ul><li>River discharge </li></ul><ul><li>Tide </li></ul><ul><li>Salinity </li></ul><ul><li>Wind force and direction </li></ul><ul><li>Temperature </li></ul>
  44. 48. Current and tide <ul><li>Transport of suspended sediment </li></ul><ul><li>River flow against tidal currents </li></ul><ul><li>Eddies in port basins </li></ul>
  45. 49. Current profiles
  46. 50. Suspended sediment
  47. 51. Salinity Flud from Sea River flow Wedge mixing Surface mixing
  48. 52. Salinity / siltation
  49. 53. Wind <ul><li>Wind creates waves, waves bring sediment into the water column </li></ul><ul><li>Wind influences the tide </li></ul>
  50. 54. Windforce 2009
  51. 55. Temperature <ul><li>Water temperature range 5 – 20 deg </li></ul><ul><li>Microbiology in bottom layers </li></ul><ul><li>Methane gas production </li></ul>
  52. 56. Temperature / dredging
  53. 57. Temperature / Siltation layer
  54. 58. Thank you for your attention

×