Upcoming SlideShare
×

# Lec1 Algorthm

1,188 views
1,130 views

Published on

Published in: Education
1 Like
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

Views
Total views
1,188
On SlideShare
0
From Embeds
0
Number of Embeds
3
Actions
Shares
0
75
0
Likes
1
Embeds 0
No embeds

No notes for slide

### Lec1 Algorthm

1. 1. Introduction to Algorithms 6.046J/18.401J LECTURE 1 Analysis of Algorithms • Insertion sort • Asymptotic analysis • Merge sort • Recurrences Prof. Charles E. Leiserson Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson
2. 2. Course information 1. Staff 8. Course website 2. Distance learning 9. Extra help 3. Prerequisites 10. Registration 4. Lectures 11. Problem sets 5. Recitations 12. Describing algorithms 6. Handouts 13. Grading policy 7. Textbook 14. Collaboration policy September 7, 2005 Introduction to Algorithms L1.2
3. 3. Analysis of algorithms The theoretical study of computer-program performance and resource usage. What’s more important than performance? • modularity • user-friendliness • correctness • programmer time • maintainability • simplicity • functionality • extensibility • robustness • reliability Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.3
4. 4. Why study algorithms and performance? • Algorithms help us to understand scalability. • Performance often draws the line between what is feasible and what is impossible. • Algorithmic mathematics provides a language for talking about program behavior. • Performance is the currency of computing. • The lessons of program performance generalize to other computing resources. • Speed is fun! Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.4
5. 5. The problem of sorting Input: sequence 〈a1, a2, …, an〉 of numbers. Output: permutation 〈a'1, a'2, …, a'n〉 such that a'1 ≤ a'2 ≤ … ≤ a'n . Example: Input: 8 2 4 9 3 6 Output: 2 3 4 6 8 9 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.5
6. 6. Insertion sort INSERTION-SORT (A, n) ⊳ A[1 . . n] for j ← 2 to n do key ← A[ j] i←j–1 “pseudocode” while i > 0 and A[i] > key do A[i+1] ← A[i] i←i–1 A[i+1] = key Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.6
7. 7. Insertion sort INSERTION-SORT (A, n) ⊳ A[1 . . n] for j ← 2 to n do key ← A[ j] i←j–1 “pseudocode” while i > 0 and A[i] > key do A[i+1] ← A[i] i←i–1 A[i+1] = key 1 i j n A: key sorted Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.7
8. 8. Example of insertion sort 8 2 4 9 3 6 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.8
9. 9. Example of insertion sort 8 2 4 9 3 6 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.9
10. 10. Example of insertion sort 8 2 4 9 3 6 2 8 4 9 3 6 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.10
11. 11. Example of insertion sort 8 2 4 9 3 6 2 8 4 9 3 6 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.11
12. 12. Example of insertion sort 8 2 4 9 3 6 2 8 4 9 3 6 2 4 8 9 3 6 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.12
13. 13. Example of insertion sort 8 2 4 9 3 6 2 8 4 9 3 6 2 4 8 9 3 6 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.13
14. 14. Example of insertion sort 8 2 4 9 3 6 2 8 4 9 3 6 2 4 8 9 3 6 2 4 8 9 3 6 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.14
15. 15. Example of insertion sort 8 2 4 9 3 6 2 8 4 9 3 6 2 4 8 9 3 6 2 4 8 9 3 6 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.15
16. 16. Example of insertion sort 8 2 4 9 3 6 2 8 4 9 3 6 2 4 8 9 3 6 2 4 8 9 3 6 2 3 4 8 9 6 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.16
17. 17. Example of insertion sort 8 2 4 9 3 6 2 8 4 9 3 6 2 4 8 9 3 6 2 4 8 9 3 6 2 3 4 8 9 6 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.17
18. 18. Example of insertion sort 8 2 4 9 3 6 2 8 4 9 3 6 2 4 8 9 3 6 2 4 8 9 3 6 2 3 4 8 9 6 2 3 4 6 8 9 done Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.18
19. 19. Running time • The running time depends on the input: an already sorted sequence is easier to sort. • Parameterize the running time by the size of the input, since short sequences are easier to sort than long ones. • Generally, we seek upper bounds on the running time, because everybody likes a guarantee. Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.19
20. 20. Kinds of analyses Worst-case: (usually) • T(n) = maximum time of algorithm on any input of size n. Average-case: (sometimes) • T(n) = expected time of algorithm over all inputs of size n. • Need assumption of statistical distribution of inputs. Best-case: (bogus) • Cheat with a slow algorithm that works fast on some input. Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.20
21. 21. Machine-independent time What is insertion sort’s worst-case time? • It depends on the speed of our computer: • relative speed (on the same machine), • absolute speed (on different machines). BIG IDEA: • Ignore machine-dependent constants. • Look at growth of T(n) as n → ∞ . “Asymptotic Analysis” Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.21
22. 22. Θ-notation Math: Θ(g(n)) = { f (n) : there exist positive constants c1, c2, and n0 such that 0 ≤ c1 g(n) ≤ f (n) ≤ c2 g(n) for all n ≥ n0 } Engineering: • Drop low-order terms; ignore leading constants. • Example: 3n3 + 90n2 – 5n + 6046 = Θ(n3) Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.22
23. 23. Asymptotic performance When n gets large enough, a Θ(n2) algorithm always beats a Θ(n3) algorithm. • We shouldn’t ignore asymptotically slower algorithms, however. • Real-world design situations often call for a T(n) careful balancing of engineering objectives. • Asymptotic analysis is a useful tool to help to n n0 structure our thinking. Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.23
24. 24. Insertion sort analysis Worst case: Input reverse sorted. n T ( n) = ∑ Θ( j ) = Θ(n 2 ) [arithmetic series] j =2 Average case: All permutations equally likely. n T ( n) = ∑ Θ( j / 2) = Θ(n 2 ) j =2 Is insertion sort a fast sorting algorithm? • Moderately so, for small n. • Not at all, for large n. Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.24
25. 25. Merge sort MERGE-SORT A[1 . . n] 1. If n = 1, done. 2. Recursively sort A[ 1 . . ⎡n/2⎤ ] and A[ ⎡n/2⎤+1 . . n ] . 3. “Merge” the 2 sorted lists. Key subroutine: MERGE Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.25
26. 26. Merging two sorted arrays 20 12 13 11 7 9 2 1 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.26
27. 27. Merging two sorted arrays 20 12 13 11 7 9 2 1 1 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.27
28. 28. Merging two sorted arrays 20 12 20 12 13 11 13 11 7 9 7 9 2 1 2 1 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.28
29. 29. Merging two sorted arrays 20 12 20 12 13 11 13 11 7 9 7 9 2 1 2 1 2 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.29
30. 30. Merging two sorted arrays 20 12 20 12 20 12 13 11 13 11 13 11 7 9 7 9 7 9 2 1 2 1 2 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.30
31. 31. Merging two sorted arrays 20 12 20 12 20 12 13 11 13 11 13 11 7 9 7 9 7 9 2 1 2 1 2 7 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.31
32. 32. Merging two sorted arrays 20 12 20 12 20 12 20 12 13 11 13 11 13 11 13 11 7 9 7 9 7 9 9 2 1 2 1 2 7 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.32
33. 33. Merging two sorted arrays 20 12 20 12 20 12 20 12 13 11 13 11 13 11 13 11 7 9 7 9 7 9 9 2 1 2 1 2 7 9 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.33
34. 34. Merging two sorted arrays 20 12 20 12 20 12 20 12 20 12 13 11 13 11 13 11 13 11 13 11 7 9 7 9 7 9 9 2 1 2 1 2 7 9 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.34
35. 35. Merging two sorted arrays 20 12 20 12 20 12 20 12 20 12 13 11 13 11 13 11 13 11 13 11 7 9 7 9 7 9 9 2 1 2 1 2 7 9 11 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.35
36. 36. Merging two sorted arrays 20 12 20 12 20 12 20 12 20 12 20 12 13 11 13 11 13 11 13 11 13 11 13 7 9 7 9 7 9 9 2 1 2 1 2 7 9 11 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.36
37. 37. Merging two sorted arrays 20 12 20 12 20 12 20 12 20 12 20 12 13 11 13 11 13 11 13 11 13 11 13 7 9 7 9 7 9 9 2 1 2 1 2 7 9 11 12 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.37
38. 38. Merging two sorted arrays 20 12 20 12 20 12 20 12 20 12 20 12 13 11 13 11 13 11 13 11 13 11 13 7 9 7 9 7 9 9 2 1 2 1 2 7 9 11 12 Time = Θ(n) to merge a total of n elements (linear time). Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.38
39. 39. Analyzing merge sort T(n) MERGE-SORT A[1 . . n] Θ(1) 1. If n = 1, done. 2T(n/2) 2. Recursively sort A[ 1 . . ⎡n/2⎤ ] Abuse and A[ ⎡n/2⎤+1 . . n ] . Θ(n) 3. “Merge” the 2 sorted lists Sloppiness: Should be T( ⎡n/2⎤ ) + T( ⎣n/2⎦ ) , but it turns out not to matter asymptotically. Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.39
40. 40. Recurrence for merge sort Θ(1) if n = 1; T(n) = 2T(n/2) + Θ(n) if n > 1. • We shall usually omit stating the base case when T(n) = Θ(1) for sufficiently small n, but only when it has no effect on the asymptotic solution to the recurrence. • CLRS and Lecture 2 provide several ways to find a good upper bound on T(n). Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.40
41. 41. Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.41
42. 42. Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. T(n) Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.42
43. 43. Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. cn T(n/2) T(n/2) Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.43
44. 44. Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. cn cn/2 cn/2 T(n/4) T(n/4) T(n/4) T(n/4) Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.44
45. 45. Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. cn cn/2 cn/2 cn/4 cn/4 cn/4 cn/4 … Θ(1) Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.45
46. 46. Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. cn cn/2 cn/2 h = lg n cn/4 cn/4 cn/4 cn/4 … Θ(1) Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.46
47. 47. Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. cn cn cn/2 cn/2 h = lg n cn/4 cn/4 cn/4 cn/4 … Θ(1) Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.47
48. 48. Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. cn cn cn/2 cn/2 cn h = lg n cn/4 cn/4 cn/4 cn/4 … Θ(1) Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.48
49. 49. Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. cn cn cn/2 cn/2 cn h = lg n cn/4 cn/4 cn/4 cn/4 cn … … Θ(1) Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.49
50. 50. Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. cn cn cn/2 cn/2 cn h = lg n cn/4 cn/4 cn/4 cn/4 cn … … Θ(1) #leaves = n Θ(n) Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.50
51. 51. Recursion tree Solve T(n) = 2T(n/2) + cn, where c > 0 is constant. cn cn cn/2 cn/2 cn h = lg n cn/4 cn/4 cn/4 cn/4 cn … … Θ(1) #leaves = n Θ(n) Total = Θ(n lg n) Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.51
52. 52. Conclusions • Θ(n lg n) grows more slowly than Θ(n2). • Therefore, merge sort asymptotically beats insertion sort in the worst case. • In practice, merge sort beats insertion sort for n > 30 or so. • Go test it out for yourself! Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson September 7, 2005 Introduction to Algorithms L1.52