Your SlideShare is downloading. ×
0
JavaCro'14 - How to handle large amounts of data in real time using a cloud environment – Ivica Čardić and Igor Bešlić
JavaCro'14 - How to handle large amounts of data in real time using a cloud environment – Ivica Čardić and Igor Bešlić
JavaCro'14 - How to handle large amounts of data in real time using a cloud environment – Ivica Čardić and Igor Bešlić
JavaCro'14 - How to handle large amounts of data in real time using a cloud environment – Ivica Čardić and Igor Bešlić
JavaCro'14 - How to handle large amounts of data in real time using a cloud environment – Ivica Čardić and Igor Bešlić
JavaCro'14 - How to handle large amounts of data in real time using a cloud environment – Ivica Čardić and Igor Bešlić
JavaCro'14 - How to handle large amounts of data in real time using a cloud environment – Ivica Čardić and Igor Bešlić
JavaCro'14 - How to handle large amounts of data in real time using a cloud environment – Ivica Čardić and Igor Bešlić
JavaCro'14 - How to handle large amounts of data in real time using a cloud environment – Ivica Čardić and Igor Bešlić
JavaCro'14 - How to handle large amounts of data in real time using a cloud environment – Ivica Čardić and Igor Bešlić
JavaCro'14 - How to handle large amounts of data in real time using a cloud environment – Ivica Čardić and Igor Bešlić
JavaCro'14 - How to handle large amounts of data in real time using a cloud environment – Ivica Čardić and Igor Bešlić
JavaCro'14 - How to handle large amounts of data in real time using a cloud environment – Ivica Čardić and Igor Bešlić
JavaCro'14 - How to handle large amounts of data in real time using a cloud environment – Ivica Čardić and Igor Bešlić
JavaCro'14 - How to handle large amounts of data in real time using a cloud environment – Ivica Čardić and Igor Bešlić
JavaCro'14 - How to handle large amounts of data in real time using a cloud environment – Ivica Čardić and Igor Bešlić
JavaCro'14 - How to handle large amounts of data in real time using a cloud environment – Ivica Čardić and Igor Bešlić
JavaCro'14 - How to handle large amounts of data in real time using a cloud environment – Ivica Čardić and Igor Bešlić
JavaCro'14 - How to handle large amounts of data in real time using a cloud environment – Ivica Čardić and Igor Bešlić
JavaCro'14 - How to handle large amounts of data in real time using a cloud environment – Ivica Čardić and Igor Bešlić
JavaCro'14 - How to handle large amounts of data in real time using a cloud environment – Ivica Čardić and Igor Bešlić
JavaCro'14 - How to handle large amounts of data in real time using a cloud environment – Ivica Čardić and Igor Bešlić
JavaCro'14 - How to handle large amounts of data in real time using a cloud environment – Ivica Čardić and Igor Bešlić
JavaCro'14 - How to handle large amounts of data in real time using a cloud environment – Ivica Čardić and Igor Bešlić
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

JavaCro'14 - How to handle large amounts of data in real time using a cloud environment – Ivica Čardić and Igor Bešlić

1,332

Published on

The aim of this presentation is to present the architecture of the distributed platform, which was created for the purpose of Liferay Cloud Services project of Liferay Inc, the company behind the very …

The aim of this presentation is to present the architecture of the distributed platform, which was created for the purpose of Liferay Cloud Services project of Liferay Inc, the company behind the very popular web portal. Liferay Cloud Services is a set of services that existing customers of the portal should allow easier management of their portal instances, monitoring and installation of patches. For this purpose own platform has been built that runs on Amazon’s Cloud infrastructure (Amazon AWS). Platform must be able to process large amounts of data in real time. The platform itself uses several technologies used together such as Liferay Portal, Apache Cassandra – NoSQL database, Akka – library for building concurrent applications and Amazon SQS – a distributed queue.

Published in: Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
1,332
On Slideshare
0
From Embeds
0
Number of Embeds
5
Actions
Shares
0
Downloads
5
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Kako obraditi velike količine podataka u realnom vremenu koristeći Cloud okruženjekoristeći Cloud okruženje Ivica Čardić Senior Software Engineer, Liferay Inc.
  • 2. Sadržaj ● Trendovi ● Liferay Cloud Services sustav ● Arhitektura sustava ● Budući planovi● Budući planovi
  • 3. Trendovi Map Reduce Big Data Cloud Computing Apache Cassandra Apache Hadoop Big Data Real-time processing Amazon Web Services Redis No SQL Auto Scaling Distributed Systems MongoDB OpenStack RackSpace
  • 4. Liferay Cloud Services (LCS) ● Poslovni zahtjevi o Upravljanje portalima Hijerarhijska organizacija Osnovne informacije o registrianim portalimaOsnovne informacije o registrianim portalima Automatsko otkrivanje portala u cluster-u o Download zakrpi(FixPacks) o Metrika portala(JVM, Server, Aplikacija)
  • 5. Liferay Cloud Services (LCS) ● Tehnički zahtjevi o SAAS aplikacija o Tisuće servera spojenih istovremeno Prikupljanje velikih količina podatakao Prikupljanje velikih količina podataka o Skalabilan sustav Modularnost Komunikacija REST servisima
  • 6. Arhitektura sustava
  • 7. Amazon Web Services ● Resursi o Amazon EC2, Auto Scaling, Elastic Load Balancing ● Skladištenje o Amazon S3, Amazon EBS ● Baze podataka● Baze podataka o Amazon RDS(MySQL), Amazon ElastiCache(Redis) ● Procesiranje o Amazon EMR(Apache Hadoop) ● Aplikacijski servisi o Amazon SNS, Amazon SQS ● Deployment & Management o Amazon CloudWatch
  • 8. Amazon EC2 Konzola
  • 9. Amazon Auto Scaling ● Dinamički pokreće i zaustavlja EC2 instance o Amazon CloudWatch servis ili o Planirani vremenski periodi ● Zamjenjuje nezdrave ili nedostupne instance● Zamjenjuje nezdrave ili nedostupne instance ● Obavještava korisnike o promjenama o Amazon SNS servis
  • 10. Netflix Asgard
  • 11. LCS Klijent ● Portlet o Sučelje za registraciju o Niti za komunikaciju ● Registracija portala LCS Portlet Customer Portal ● Registracija portala o otkriva portale u cluster-u ● Handshake ● “Dvosmjerna” veza o Prikuplja podatke o Izvršava komande OSB LCS Gateway LCS Dashboard Podaci Registracija
  • 12. LCS Klijent
  • 13. LCS Gateway ● Server: Apache Tomcat ● Java Servlet ● Stateles arhitektura o Tomcat-i nisu u clusteru OSB LCS Gateway Amazon ElastiCache(Redis) Podaci Autorizacija o Tomcat-i nisu u clusteru ● Dobiva podatke od klijenta ● “Šalje” komande klijentu ● Autorizacija portala prilikom slanja podataka Amazon SQS ElastiCache(Redis)
  • 14. Amazon SQS ● Pouzdan ● Jednostavan za korištenje ● Skalabilan ● Siguran● Siguran ● Jeftin ● Alternative: JMS, RabitMQ, ZeroMQ
  • 15. LCS Processor ● Server: Apache Tomcat ● Akka framework ● Stateless arhitektura o Tomcat-i nisu u clusteru Amazon SQS Amazon ElastiCache(Redis) Podaci o Tomcat-i nisu u clusteru ● Sprema podatke u Cassandru ● Provjerava autentičnost portala OSB LCS Processor Cassandra NOSQL Podaci
  • 16. Amazon ElastiCache (Redis) ● Podržava Redis i Memcached ● Redis o key-value in-memory baza podataka o moguće spremanje podataka na disk kreiranjemo moguće spremanje podataka na disk kreiranjem dump datoteke ili dodavanjem komandi u log o tipovi podataka: string hash, lista i set o podržava master-slave replikaciju o podržava transakcije, publish/subscribe, ograničeno vrijeme života podataka, rad isključivo kao cache
  • 17. Apache Cassandra ● Linearna skalabilnost ● Brzi upis podataka ● Fleksibilna pohrana podataka ● Ne sadrži centralno mjesto pogreške● Ne sadrži centralno mjesto pogreške ● Jednostavna distribucija podataka ● Pojednostavljena administracija ● Podrška za transakcije (AID) ● Sporije čitanje podataka ● Oprez prilikom modeliaranja podataka
  • 18. LCS Dashboard ● Apache Tomcat ● Liferay portal ● Sučelje implementirano kao skup portleta MySQL OAuth File Repository Amazon S3 LCS Dashboard kao skup portleta ● Klijent vrši autentifikaciju preko OAuth-a ● Integracija sa centralnom bazom korisnika Cassandra NOSQL OSB LCS Portlet OSB LCS NOSQL Amazon EMR
  • 19. LCS Dashboard
  • 20. LCS Dashboard
  • 21. LCS Dashboard
  • 22. Amazon EMR(Apache Haddop) ● Omogućava distribuirano procesiranje velikih količina podataka preko grupe računala koristeći jednostavne programske modele ● Po potrebi povećava broj servera● Po potrebi povećava broj servera ● Koristi se pri izračunu dostupnih zakrpa za svaki server
  • 23. Budući planovi ● Private Beta ● Error i Log management ● Web analitika
  • 24. Hvala Ivica Čardić Senior Software Engineer ivica.cardic@liferay.comivica.cardic@liferay.com Igor Bešlić Senior Software Engineer igor.beslic@liferay.com

×