Your SlideShare is downloading. ×
Depth of Feelings:  Alternatives for Modeling Affect  in User Models & Cognitive Architectures Eva Hudlicka Psychometrix A...
“ Diseases of the Mind”* Are emotions….. *Immanuel Kant
“ reason is, and ought only to be the slave of the passions” <ul><li>Hume, 1739 </li></ul>Or are emotions essential for ad...
Emotions in “Human” Interaction “ too little…”
Emotions in Human Interaction “ too much..”
Or Is There a Middle Ground?
Outline <ul><li>Motivation & Objectives </li></ul><ul><li>Emotions – Background Info </li></ul><ul><li>Computational Model...
Emotions in HCI: State-of-the-art KISMET -  Cynthia Breazeal, MIT Media Lab
Emotions in HCI: State-of-the-art Agent Max - Becker-Asano et al.
Requirements for Affective HCI Affective User Model / Cognitive-Affective  Architecture Emotion Sensing &  Recognition “ E...
Why Include Emotions in User Models & Agent Architectures?   <ul><li>Emotion is a critical component of social interaction...
Outline <ul><li>Motivation & Objectives </li></ul><ul><li>Emotions – Background Info </li></ul><ul><li>Computational Model...
Definition(s) of Emotions <ul><li>(See:  roles & characteristics of emotions…) </li></ul><ul><li>Evaluative judgments of w...
Roles of Emotions Intrapsychic Interpersonal WHAT?  * Social coordination * Rapid communication of behavioral intent; HOW?...
How Do We Recognize an Emotion if We See One?  <ul><li>Manifested across multiple , interacting  modalities: </li></ul><ul...
Simple Fear “Signature”:  Large, Approaching Object Increased heart-rate; Attacked? Crushed? Flee? Freeze? Feeling of fear...
A Taxonomy of Affective Factors Traits Affective Factors NOT ALL TRAITS are affective! Attitudes,  Preferences… Affective ...
Core Processes of Emotions Effects of Emotions (on cognition & behavior) Generation of Emotions  (via cognitive appraisal)...
Emotion Generation via Appraisal Stimuli Appraisal Dimensions Recalled Perceived Imagined Appraisal Process Emotions Exist...
Emotion Generation via Appraisal Stimuli Appraisal Dimensions Recalled Perceived Imagined Appraisal Process Emotions Exist...
Emotion Effects on Cognition  <ul><li>Emotion and cognition function as closely-coupled information processing systems </l...
Examples of Affective Biases <ul><li>Anxiety  </li></ul><ul><ul><li>Narrows attentional focus  </li></ul></ul><ul><ul><li>...
“ Thank God! Those blasted crickets have finally stopped!”
Outline <ul><li>Motivation & Objectives </li></ul><ul><li>Emotions – Background Info </li></ul><ul><li>Computational Model...
Considerations Guiding Model Requirements <ul><li>Why and when to model emotions? </li></ul><ul><li>Which emotions? </li><...
Why and When to Model Emotions?  <ul><li>Research </li></ul><ul><ul><li>Understand how emotions work in biological agents ...
Why and When to Model Emotions?  <ul><li>Research </li></ul><ul><ul><li>Understand how emotions work in biological agents ...
Which Emotions and Affective Factors to Model?  <ul><li>Model objectives & application influence selection: </li></ul><ul>...
A Taxonomy of Affective Factors States Affective States Emotions Moods Basic Complex Negative Positive Anger Joy Fear Sham...
But Exactly  Which  Aspects of Emotions  Should We Model?   <ul><li>Recall the multiple modalities of emotions: </li></ul>...
  Emotion Roles Emotion Generation   Emotion Effects  on Cognition & Behavior Which Processes to Model?  <ul><li>Social   ...
Computational Tasks for Appraisal Models Stimuli <ul><li>Emotion attributes: </li></ul><ul><li>Complexity of emotion const...
Most Influential Appraisal Theories in Computational Models <ul><li>Ortony, Clore and Collins (OCC) (1988) </li></ul><ul><...
Example #1:  OCC Appraisal Model
Valenced Reactions Event-based emotions Attribution emotions Attraction emotions Event Related Appraised wrt goals “ Does ...
Valenced Reactions Event-based emotions happy for, pity,  gloating.. joy,distress hope, fear gratitude, anger desirability...
Valenced Reactions Event-based emotions Attribution emotions Attraction emotions Fortunes-of-self emotions Fortunes-of-oth...
Example #1:  OCC Appraisal Model <ul><li>Developed to provide a “computationally tractable model of emotion” </li></ul><ul...
Example #2:  Scherer‘s  “Component Process Model”
Coping potential Norms Relevance Appraisal variables Novelty Valence Goal relevance Certainty Urgency Goal  congruence Age...
STIMULI Novelty Valence Goal relevance Outcome probability Urgency Goal  congruence Agency Coping potential Norms high hig...
Example #2:  Scherer‘s  “Component Process Model” <ul><li>Emphasis on domain-independent appraisal dimensions  (emotion co...
Results of the Appraisal Process:  Emotion ‘Specification’ fear .90 probability, importance of affected goals 2 minutes (e...
Representation & Reasoning Alternatives <ul><li>Vector spaces   (Scherer) </li></ul><ul><li>Connectionist  (Velasquez) </l...
Bayesian Belief Networks (MAMID, Hudlicka)
Complex Causal Interpretation (EMA, Gratch & Marsella)
Emotion Effects on Cognition Cognitive-Affective Architecture Stimuli Situations Expectations Goals Affect   Appraiser Emo...
Computational Tasks for Modeling Emotion Effects Emotion(s) <ul><li>Cognition   Attention, perception, memory,  </li></ul>...
Influential Theories <ul><li>Fewer theories exist than for appraisal  </li></ul><ul><li>Specific mechanisms of emotion eff...
Emotions As Distinct Modes of Processing <ul><li>Parameter-controlled ‘global’ effects across multiple processes </li></ul...
Emotions As Parameters  (MAMID, Hudlicka) Traits Extraversion  Stability Conscientiousness Aggressiveness   STATES / TRAIT...
Modeling Threat Bias Processing Parameters Construct parms. - Cue selection - Interpretive biases ... Process  Threat cues...
Modeling Affect-Induced Differences  in Behavior   <ul><li>MAMID architecture modeled behavior of peacekeeper unit leaders...
Distinct Individual Profiles & Behavior “ Normal”    “Anxious” Attention Perception / Situation  Assessment Expectation Ge...
Representation & Reasoning Alternatives <ul><li>Symbolic  - specific emotions linked to particular effects & behavior </li...
What Level of Resolution? “Black box” vs. “Process” models <ul><li>May be all that is required for a particular applicatio...
Process Models - emulate internal processing   <ul><li>Implement hypothesized mechanisms mediating the I-O mapping </li></...
What Type of an Architecture? <ul><li>Which architectural components are necessary? </li></ul><ul><ul><li>Attention, situa...
Components of a Cognitive-Affective Architecture :  See-Think-Feel-Do <ul><li>“ See” </li></ul><ul><ul><li>Attention </li>...
Questions Regarding Representational & Reasoning Requirements <ul><li>What must represented explicitly?  </li></ul><ul><ul...
Examples of Cognitive-Affective Architectures <ul><li>Emotion-augmented cognitive architectures </li></ul><ul><ul><li>Reco...
MAMID Cognitive-Affective Architecture   Action  Selection Cues: State of the world ( “growling dog”, “approaching”) Situa...
“ The Triune” Generic Architectures (Sloman; Leventhal & Scherer; Ortony et al.; Arbib & Fellous..) Reactive  Routine  Ref...
Outline <ul><li>Motivation & Objectives </li></ul><ul><li>Emotions – Background Info </li></ul><ul><li>Developing Affectiv...
Framework for Development, Analysis and Comparison of Models <ul><li>Which modeling objectives? </li></ul><ul><li>Which em...
Outline <ul><li>Motivation & Objectives </li></ul><ul><li>Emotions – Background Info </li></ul><ul><li>Developing Affectiv...
Summary <ul><li>Need for including (some) emotions in (some) user models </li></ul><ul><li>Background info from emotion re...
Successes & State of the Art (1) <ul><li>Research  </li></ul><ul><ul><li>Terminological clarifications </li></ul></ul><ul>...
Successes & State of the Art (2)  <ul><li>Research  </li></ul><ul><ul><li>Terminological clarifications </li></ul></ul><ul...
Challenges <ul><li>Theories to guide model building </li></ul><ul><ul><li>Appraisal, mechanisms of emotion effects, meta-c...
Parting Thought <ul><li>“ Anyone can model emotions. That is easy.  </li></ul><ul><li>But to model emotions  </li></ul><ul...
Depth of Feelings:  Alternatives for Modeling Affect  in User Models & Cognitive Architectures Eva Hudlicka Psychometrix A...
Upcoming SlideShare
Loading in...5
×

Depth of Feelings: Modeling Emotions in User Models and Agent Architectures

2,611

Published on

Overview of alternative approaches to modeling emotions in user models and cognitive-affective agent architectures.

Published in: Technology
0 Comments
3 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
2,611
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
0
Comments
0
Likes
3
Embeds 0
No embeds

No notes for slide

Transcript of "Depth of Feelings: Modeling Emotions in User Models and Agent Architectures"

  1. 1. Depth of Feelings: Alternatives for Modeling Affect in User Models & Cognitive Architectures Eva Hudlicka Psychometrix Associates Blacksburg, US [email_address] psychometrixassociates.com TSD 2006 Masarykova Universita, Brno, Czech Republic September 15, 2006
  2. 2. “ Diseases of the Mind”* Are emotions….. *Immanuel Kant
  3. 3. “ reason is, and ought only to be the slave of the passions” <ul><li>Hume, 1739 </li></ul>Or are emotions essential for adaptive intelligent behavior…
  4. 4. Emotions in “Human” Interaction “ too little…”
  5. 5. Emotions in Human Interaction “ too much..”
  6. 6. Or Is There a Middle Ground?
  7. 7. Outline <ul><li>Motivation & Objectives </li></ul><ul><li>Emotions – Background Info </li></ul><ul><li>Computational Models of Emotion </li></ul><ul><li>Framework for Model Analysis </li></ul><ul><li>Summary & Conclusions </li></ul>
  8. 8. Emotions in HCI: State-of-the-art KISMET - Cynthia Breazeal, MIT Media Lab
  9. 9. Emotions in HCI: State-of-the-art Agent Max - Becker-Asano et al.
  10. 10. Requirements for Affective HCI Affective User Model / Cognitive-Affective Architecture Emotion Sensing & Recognition “ Emotion” Expression OR? GRETA, Fiorella de Rosis, U. Bari
  11. 11. Why Include Emotions in User Models & Agent Architectures? <ul><li>Emotion is a critical component of social interaction & individual motivation </li></ul><ul><li>Affective user models are more realistic, enabling: </li></ul><ul><ul><li>Socially-appropriate dialogue (speech tone, content, turn taking) </li></ul></ul><ul><ul><li>More effective dialogue (persuasion, empathy) </li></ul></ul><ul><ul><ul><li>Infer implied meaning & motivation </li></ul></ul></ul><ul><ul><ul><li>Predict affective reaction to system’s utterances </li></ul></ul></ul><ul><li>Affective agent architectures enable: </li></ul><ul><ul><li>Socially-appropriate responses and behavior </li></ul></ul><ul><ul><li>May improve agent autonomy in complex, uncertain environments </li></ul></ul><ul><li>Affect-adaptive user interfaces and responses </li></ul>
  12. 12. Outline <ul><li>Motivation & Objectives </li></ul><ul><li>Emotions – Background Info </li></ul><ul><li>Computational Models of Emotion </li></ul><ul><li>Framework for Model Analysis </li></ul><ul><li>Summary & Conclusions </li></ul>
  13. 13. Definition(s) of Emotions <ul><li>(See: roles & characteristics of emotions…) </li></ul><ul><li>Evaluative judgments of world, others, self …in light of agent’s goals and beliefs </li></ul>
  14. 14. Roles of Emotions Intrapsychic Interpersonal WHAT? * Social coordination * Rapid communication of behavioral intent; HOW? Express emotions via: -Facial expression -Speech (content & properties) -Gesture, Posture -Specific actions WHAT? * Motivation * Homeostasis * Adaptive behavior <ul><li>HOW? </li></ul><ul><li>- Emotion generation (appraisal) </li></ul><ul><li>Emotion effects (processing biases) </li></ul><ul><li>Global interrupt system </li></ul><ul><li>Goal management </li></ul><ul><li>Prepare for coordinated actions </li></ul>
  15. 15. How Do We Recognize an Emotion if We See One? <ul><li>Manifested across multiple , interacting modalities: </li></ul><ul><ul><li>Somatic / Physiological (neuroendocrine - e.g., heart rate, GSR) </li></ul></ul><ul><ul><li>Cognitive / Interpretive (“Nothing is good or bad but thinking makes it so…”) </li></ul></ul><ul><ul><li>Behavioral / Motivational (action oriented, expressive, ‘visible’) </li></ul></ul><ul><ul><li>Experiential / Subjective (“that special feeling…”, consciousness) </li></ul></ul><ul><li>Much terminological confusion can be attributed to a lack of consideration of these multiple modalities of emotions </li></ul><ul><ul><li>e.g., Is emotion a feeling or a thought? - It’s both </li></ul></ul>
  16. 16. Simple Fear “Signature”: Large, Approaching Object Increased heart-rate; Attacked? Crushed? Flee? Freeze? Feeling of fear Cognitive Subjective
  17. 17. A Taxonomy of Affective Factors Traits Affective Factors NOT ALL TRAITS are affective! Attitudes, Preferences… Affective States Emotions Moods Negative Positive Traits States “ Big 5” … Basic Anger Joy Fear … Complex Shame Guilt Pride …
  18. 18. Core Processes of Emotions Effects of Emotions (on cognition & behavior) Generation of Emotions (via cognitive appraisal) Cognitive-Affective Architecture Stimuli Situations Expectations Goals Cognitive Appraisal Emotions
  19. 19. Emotion Generation via Appraisal Stimuli Appraisal Dimensions Recalled Perceived Imagined Appraisal Process Emotions Existing emotions, moods, traits Goals (desires, values, standards) Beliefs, Expectations
  20. 20. Emotion Generation via Appraisal Stimuli Appraisal Dimensions Recalled Perceived Imagined Appraisal Process Emotions Existing emotions, moods, traits Goals (desires, values, standards) Beliefs, Expectations <ul><ul><li>Domain-Independent Appraisal Dimensions </li></ul></ul><ul><ul><li>Novelty </li></ul></ul><ul><ul><li>Valence </li></ul></ul><ul><ul><li>Goal / Need relevance </li></ul></ul><ul><ul><li>Goal congruence </li></ul></ul><ul><ul><li>Agency </li></ul></ul><ul><ul><li>Coping potential </li></ul></ul><ul><ul><li>Social and self norms and values </li></ul></ul>
  21. 21. Emotion Effects on Cognition <ul><li>Emotion and cognition function as closely-coupled information processing systems </li></ul><ul><li>Emotions influence fundamental processes mediating high-level cognition: </li></ul><ul><ul><li>Attention speed and capacity </li></ul></ul><ul><ul><li>Working memory speed and capacity </li></ul></ul><ul><ul><li>Long-term memory recall and encoding </li></ul></ul><ul><li>Influences on processing and contents </li></ul><ul><ul><li>Transient biases influence processing </li></ul></ul><ul><ul><li>Long-term biases result in differences in long-term memory content & structure </li></ul></ul>
  22. 22. Examples of Affective Biases <ul><li>Anxiety </li></ul><ul><ul><li>Narrows attentional focus </li></ul></ul><ul><ul><li>Reduces working memory capacity </li></ul></ul><ul><ul><li>Biases towards detection of threatening stimuli </li></ul></ul><ul><ul><li>Biases towards interpretation of ambiguous stimuli as threatening </li></ul></ul><ul><ul><li>Promotes self-focus </li></ul></ul><ul><li>Positive emotions </li></ul><ul><ul><li>Increase estimates of degree of control </li></ul></ul><ul><ul><li>Overestimate of likelihood of positive events </li></ul></ul><ul><ul><li>Promote creative problem-solving </li></ul></ul><ul><ul><li>Promotes ‘big picture’ thinking - focus on ‘the forest’ </li></ul></ul><ul><li>Biases can be adaptive or maladaptive, depending on context </li></ul>
  23. 23. “ Thank God! Those blasted crickets have finally stopped!”
  24. 24. Outline <ul><li>Motivation & Objectives </li></ul><ul><li>Emotions – Background Info </li></ul><ul><li>Computational Models of Emotion </li></ul><ul><li>Framework for Model Analysis </li></ul><ul><li>Summary & Conclusions </li></ul>
  25. 25. Considerations Guiding Model Requirements <ul><li>Why and when to model emotions? </li></ul><ul><li>Which emotions? </li></ul><ul><li>Which aspects of emotions? </li></ul><ul><li>Which affective processes? </li></ul><ul><li>Which theory? </li></ul><ul><li>What level of resolution? (Are the data available?) </li></ul><ul><li>Which architecture? </li></ul><ul><li>… Knowledge and data requirements </li></ul><ul><li>…… Representational and reasoning requirements </li></ul><ul><li>……… ..Representational and reasoning formalisms and methods </li></ul>
  26. 26. Why and When to Model Emotions? <ul><li>Research </li></ul><ul><ul><li>Understand how emotions work in biological agents </li></ul></ul><ul><li>Applied </li></ul><ul><ul><li>More effective and ‘fun’ human-computer interaction </li></ul></ul><ul><ul><ul><li>Decision-support </li></ul></ul></ul><ul><ul><ul><li>Training & tutoring </li></ul></ul></ul><ul><ul><ul><li>Recommender systems </li></ul></ul></ul><ul><ul><ul><li>Entertainment </li></ul></ul></ul><ul><ul><li>More robust agent behavior </li></ul></ul>
  27. 27. Why and When to Model Emotions? <ul><li>Research </li></ul><ul><ul><li>Understand how emotions work in biological agents </li></ul></ul><ul><li>Applied </li></ul><ul><ul><li>More effective and ‘fun’ human-computer interaction </li></ul></ul><ul><ul><ul><li>Decision-support </li></ul></ul></ul><ul><ul><ul><li>Training & tutoring </li></ul></ul></ul><ul><ul><ul><li>Recommender systems </li></ul></ul></ul><ul><ul><ul><li>Entertainment </li></ul></ul></ul><ul><ul><li>More robust agent behavior </li></ul></ul>(Breazeal, 2003) (de Rosis, 2003)
  28. 28. Which Emotions and Affective Factors to Model? <ul><li>Model objectives & application influence selection: </li></ul><ul><ul><li>User models for decision-support systems in stressful settings: fear, anxiety, frustration, surprise, boredom – probably not pride, shame, guilt </li></ul></ul><ul><ul><li>Synthetic agents for children: happiness, sadness, fear, anger …also pride, shame </li></ul></ul><ul><ul><li>User models & agents in training and tutoring: happiness, fear/anxiety, frustration, surprise, boredom </li></ul></ul>
  29. 29. A Taxonomy of Affective Factors States Affective States Emotions Moods Basic Complex Negative Positive Anger Joy Fear Shame Guilt Pride Traits Traits Affective Factors “ Big 5” …
  30. 30. But Exactly Which Aspects of Emotions Should We Model? <ul><li>Recall the multiple modalities of emotions: </li></ul><ul><ul><li>Somatic / Physiological (infrequent) </li></ul></ul><ul><ul><li>Cognitive / Interpretive (most frequent) </li></ul></ul><ul><ul><li>Behavioral / Motivational (most frequent) </li></ul></ul><ul><ul><li>Experiential / Subjective (infeasible?) </li></ul></ul>Cognitive Subjective
  31. 31. Emotion Roles Emotion Generation Emotion Effects on Cognition & Behavior Which Processes to Model? <ul><li>Social </li></ul><ul><li>Communication - Coordination </li></ul><ul><li>… . </li></ul>Intrapsychic: - Goal management - Behavior preparation -…… implement
  32. 32. Computational Tasks for Appraisal Models Stimuli <ul><li>Emotion attributes: </li></ul><ul><li>Complexity of emotion construct </li></ul><ul><li>* type </li></ul><ul><li>* intensity </li></ul><ul><li>* cause … </li></ul><ul><li>* direction </li></ul><ul><li>* … </li></ul><ul><li>Types of stimuli: </li></ul><ul><li>Internal / External </li></ul><ul><li>Real / Imagined </li></ul><ul><li>Past / Present / Future </li></ul><ul><li>Domain specific / Abstract appraisal dimensions </li></ul><ul><li>Complexity of stimulus structure </li></ul><ul><li>Mental constructs required (e.g., goals, expectations) </li></ul><ul><li>Stimuli-to-emotion mappings </li></ul><ul><li>Intensity calculation </li></ul><ul><li>Nature of mapping process: </li></ul><ul><li>* Stages & functions </li></ul><ul><li>* Degree of variability </li></ul><ul><li>Integrating multiple emotions </li></ul><ul><li>Emotion dynamics over time </li></ul>Emotions
  33. 33. Most Influential Appraisal Theories in Computational Models <ul><li>Ortony, Clore and Collins (OCC) (1988) </li></ul><ul><li>Leventhal and Scherer --> Scherer (1984 …) </li></ul><ul><li>Arnold  Lazarus  Smith and Kirby (1960 …) </li></ul>
  34. 34. Example #1: OCC Appraisal Model
  35. 35. Valenced Reactions Event-based emotions Attribution emotions Attraction emotions Event Related Appraised wrt goals “ Does this promote world peace?” Acts-by-Agents Related Appraised wrt standards “ Was it appropriate for John to rob the bank?” Object Related Appraised wrt attitudes “ Is this appealing to me?”
  36. 36. Valenced Reactions Event-based emotions happy for, pity, gloating.. joy,distress hope, fear gratitude, anger desirability (pleased / displeased) desirability for other (deserving, liking) likelihood praiseworthiness (approve / disapprove) appealingness (like / dislike) degree of autonomy, expectation deviation familiarity Attribution emotions Attraction emotions Fortunes-of-self emotions Fortunes-of-others emotions Prospect-based emotions Well-being emotions pride, shame, reproach love,hate
  37. 37. Valenced Reactions Event-based emotions Attribution emotions Attraction emotions Fortunes-of-self emotions Fortunes-of-others emotions happy for, pity, gloating.. distress Prospect-based emotions Well-being emotions anger reproach love,hate Desirability = low fear Praiseworthiness = low degree of autonomy = high expectation deviation = high
  38. 38. Example #1: OCC Appraisal Model <ul><li>Developed to provide a “computationally tractable model of emotion” </li></ul><ul><li>Taxonomy of triggering conditions and emotion types </li></ul><ul><li>Specification of variables affecting intensity </li></ul><ul><ul><li>“ Global” (physiological state…) </li></ul></ul><ul><ul><li>“ Local” (appraisal dimensions…) </li></ul></ul><ul><li>Many implementations (Elliot, Reilly, Bartneck, Andre, Gratch…) </li></ul>
  39. 39. Example #2: Scherer‘s “Component Process Model”
  40. 40. Coping potential Norms Relevance Appraisal variables Novelty Valence Goal relevance Certainty Urgency Goal congruence Agency Stimuli Implications Coping Norms Emotion
  41. 41. STIMULI Novelty Valence Goal relevance Outcome probability Urgency Goal congruence Agency Coping potential Norms high high v. high low other low low high FEAR
  42. 42. Example #2: Scherer‘s “Component Process Model” <ul><li>Emphasis on domain-independent appraisal dimensions (emotion components) </li></ul><ul><ul><li>Emotions defined as patterns of appraisal variable values </li></ul></ul><ul><ul><li>Variables evaluated in a fixed sequence </li></ul></ul><ul><li>Appraisal as a dynamic, evolving process </li></ul><ul><li>… across multiple modalities </li></ul><ul><li>… at multiple levels of complexity </li></ul><ul><ul><li>Conceptual </li></ul></ul><ul><ul><li>Schematic </li></ul></ul><ul><ul><li>Perceptual-motor </li></ul></ul><ul><li>Implementations: </li></ul><ul><ul><li>Black-box implementations </li></ul></ul><ul><ul><li>Appraisal dimensions adopted in cognitive-affective architectures </li></ul></ul>
  43. 43. Results of the Appraisal Process: Emotion ‘Specification’ fear .90 probability, importance of affected goals 2 minutes (exp. decay) { aggressive dog | owner} “ aggressive dog approaching” negative { dog | negligent owner | self } low { safety of self | safety of dog | delay } Other appraisal variables….: Type: Descriptive detail: Intensity: Variables affecting intensity: Cause: Direction: Coping potential: Duration: Valence: Goals affected:
  44. 44. Representation & Reasoning Alternatives <ul><li>Vector spaces (Scherer) </li></ul><ul><li>Connectionist (Velasquez) </li></ul><ul><li>Symbolic </li></ul><ul><ul><li>Rules (Marinier, Jones, Henninger, Hudlicka…) </li></ul></ul><ul><ul><li>Belief nets (de Rosis, Hudlicka, …) </li></ul></ul><ul><li>Complex symbolic structures (Elliot, Reilly, Gratch & Marsella) </li></ul><ul><ul><li>Appraisal frames, causal plan structures </li></ul></ul><ul><li>Spreading activation over networks of processes (Breazeal) </li></ul><ul><li>Decision-theoretic </li></ul><ul><ul><li>Decision trees </li></ul></ul><ul><ul><li>Decision theoretic formulations (Gratch & Marsella, Lisetti & Gmytrasiewicz) </li></ul></ul><ul><li>Blackboards and ‘specialists’ (Gratch & Marsella) </li></ul><ul><li>Finite state machines (Kopecek) </li></ul><ul><li>Markov models (El Nasr) </li></ul><ul><li>Theorem proving (Zippora) </li></ul><ul><li>Dynamical systems </li></ul>
  45. 45. Bayesian Belief Networks (MAMID, Hudlicka)
  46. 46. Complex Causal Interpretation (EMA, Gratch & Marsella)
  47. 47. Emotion Effects on Cognition Cognitive-Affective Architecture Stimuli Situations Expectations Goals Affect Appraiser Emotions
  48. 48. Computational Tasks for Modeling Emotion Effects Emotion(s) <ul><li>Cognition Attention, perception, memory, </li></ul><ul><li>learning, problem-solving, decision-making…) </li></ul><ul><li>Behavior Verbal, non-verbal, action selection </li></ul><ul><li>… & other affective factors: </li></ul><ul><li>Affective States </li></ul><ul><li>Moods </li></ul><ul><li>Traits </li></ul><ul><li>Processes and structures affected </li></ul><ul><li>Variability in effects (by intensity, by individual…) </li></ul><ul><li>Integration of multiple emotions (in cognition, in behavior) </li></ul>Effect(s)
  49. 49. Influential Theories <ul><li>Fewer theories exist than for appraisal </li></ul><ul><li>Specific mechanisms of emotion effects not as well developed </li></ul><ul><li>Existing theories: </li></ul><ul><ul><li>Spreading activation & priming (Bower, 1984) </li></ul></ul><ul><ul><ul><li>… memory effects & biases </li></ul></ul></ul><ul><ul><li>Distinct modes of processing associated with different emotions (Oatley & Johnson-Laird, 1987) </li></ul></ul><ul><ul><li>Emotions as patterns of parameters modulating processing </li></ul></ul><ul><ul><ul><li>(Fellous, Hudlicka, Matthews, Ortony et al., …) </li></ul></ul></ul>
  50. 50. Emotions As Distinct Modes of Processing <ul><li>Parameter-controlled ‘global’ effects across multiple processes </li></ul><ul><ul><li>Neuromodulation theories (Fellous, 2004) </li></ul></ul><ul><li>Effects on low-level fundamental processes: attention & working memory </li></ul><ul><ul><li>Speed & capacity & content bias (e.g., threat, self) </li></ul></ul><ul><li>Effects on long-term memory </li></ul><ul><ul><li>Encoding and retrieval: speed & elaboration & bias (threat, self) </li></ul></ul><ul><li>Effects on higher-level processes </li></ul><ul><ul><li>Problem-solving, decision-making, planning.. </li></ul></ul><ul><ul><li>Affect appraiser processes (e.g., assessments of coping potential) </li></ul></ul><ul><li>Can ‘higher-level’ effects be explained (& implemented ) in terms of effects on the fundamental processes? </li></ul>
  51. 51. Emotions As Parameters (MAMID, Hudlicka) Traits Extraversion Stability Conscientiousness Aggressiveness STATES / TRAITS Processing Structural Module Parameters Construct parameters Architecture topology Long-term memory speed, capacity Cue selection & delay …. Data flow among modules Content & structure Affective States Anxiety Anger Sadness Joy ARCHITECTURE PARAMETERS COGNITIVE ARCHITECTURE Attention Action Selection Situation Assessment Goal Manager Expectation Generator Affect Appraiser
  52. 52. Modeling Threat Bias Processing Parameters Construct parms. - Cue selection - Interpretive biases ... Process Threat cues Process Threatening interpretations Traits Low Stability TRAITS / STATES COGNITIVE ARCHITECTURE PARAMETERS COGNITIVE ARCHITECTURE Attention Action Selection Situation Assessment Goal Manager Expectation Generator Affect Appraiser Emotions Higher Anxiety / Fear Predisposes towards Preferential processing of Threatening stimuli Threat constructs Rated more highly
  53. 53. Modeling Affect-Induced Differences in Behavior <ul><li>MAMID architecture modeled behavior of peacekeeper unit leaders </li></ul><ul><li>Units encountered a series of ‘surprise’ events en route </li></ul><ul><ul><li>Hostile crowds </li></ul></ul><ul><ul><li>Ambushes </li></ul></ul><ul><ul><li>Destroyed bridges </li></ul></ul><ul><li>Different leaders defined by distinct personality profiles: </li></ul><ul><ul><li>“ Normal” leader </li></ul></ul><ul><ul><li>“ High anxious” leader </li></ul></ul><ul><ul><li>“ High aggressive” leader </li></ul></ul><ul><li>Parameter-controlled ‘micro effects’ resulted in observable differences in behavior & distinct ‘mission outcomes’ </li></ul>
  54. 54. Distinct Individual Profiles & Behavior “ Normal” “Anxious” Attention Perception / Situation Assessment Expectation Generation Affect Appraisal Goal Selection Action Selection Hostile large crowd Hostile large crowd Objective near Unit capability high Limited # of high-threat & self cues Movement blocked Danger to unit low Danger to unit and self high Perceptual threat & self bias Anxiety: Normal Anxiety: High Rapid-onset of high anxiety Danger from crowd unlikely Danger to unit and self high Career success threatened Threat and self oriented expectations Non-lethal crowd control Reduce anxiety Defend unit Threat and self focus goals Stop Stop; Lethal crowd control Non-lethal crowd control Report info Request help Request info Anxiety regulating behavior
  55. 55. Representation & Reasoning Alternatives <ul><li>Symbolic - specific emotions linked to particular effects & behavior </li></ul><ul><ul><li>Rules </li></ul></ul><ul><ul><li>Belief nets </li></ul></ul><ul><li>Connectionist (Araujo) </li></ul><ul><ul><li>Parameters bias processing within a network </li></ul></ul><ul><li>Decision-theoretic (Busemeyer) </li></ul><ul><ul><li>Decision field theory </li></ul></ul>
  56. 56. What Level of Resolution? “Black box” vs. “Process” models <ul><li>May be all that is required for a particular application </li></ul><ul><li>Easier to build (…initially) </li></ul>Black box models - simulate input-output mappings ??? INPUT OUTPUT Don’t know and don’t care Stimulus Emotion Emotion Effects
  57. 57. Process Models - emulate internal processing <ul><li>Implement hypothesized mechanisms mediating the I-O mapping </li></ul><ul><li>Necessary if aiming to understand emotion processes </li></ul><ul><li>More difficult initially, but more robust and general </li></ul>Cognitive-Affective Architecture INPUT OUTPUT Process #1 Process #2 Process #3 Memory A Memory B Would like to know and do care
  58. 58. What Type of an Architecture? <ul><li>Which architectural components are necessary? </li></ul><ul><ul><li>Attention, situation assessment, expectation generation, affect appraiser, planner..? </li></ul></ul><ul><ul><li>Data and control paths among the modules? </li></ul></ul><ul><li>What fundamental processing paradigm? </li></ul><ul><ul><li>Sequential see-think-do (see-think/ feel- do?) </li></ul></ul><ul><ul><li>vs. parallel distributed processing </li></ul></ul><ul><li>Where does emotion reside within the architecture? </li></ul><ul><ul><li>Emotion as dedicated modules? </li></ul></ul><ul><ul><li>vs. emotions as modulating parameters? </li></ul></ul><ul><ul><li>vs. emotions as emergent properties of a complex, multi-level architecture? </li></ul></ul>
  59. 59. Components of a Cognitive-Affective Architecture : See-Think-Feel-Do <ul><li>“ See” </li></ul><ul><ul><li>Attention </li></ul></ul><ul><ul><li>Sensing and Perception </li></ul></ul><ul><li>“ Think” </li></ul><ul><ul><li>Situation Assessment </li></ul></ul><ul><ul><ul><li>Causes </li></ul></ul></ul><ul><ul><ul><li>Current assessments </li></ul></ul></ul><ul><ul><ul><li>Future predictions (expectations) </li></ul></ul></ul><ul><ul><li>Goal management </li></ul></ul><ul><ul><ul><li>Goals, drives, desires, norms, value </li></ul></ul></ul><ul><ul><li>Problem solving, Planning, Learning </li></ul></ul><ul><ul><li>Memory (declarative, procedural, episodic) (sensory, working , long-term) </li></ul></ul><ul><li>“ Feel” </li></ul><ul><ul><li>Affect appraiser </li></ul></ul><ul><ul><li>Emotion effects </li></ul></ul><ul><li>“ Do” </li></ul><ul><ul><li>Effectors </li></ul></ul><ul><ul><li>Performance monitoring </li></ul></ul>
  60. 60. Questions Regarding Representational & Reasoning Requirements <ul><li>What must represented explicitly? </li></ul><ul><ul><li>Time (present, past, future) </li></ul></ul><ul><ul><ul><li>Hope needs expectations, regret needs past </li></ul></ul></ul><ul><ul><li>Mental constructs </li></ul></ul><ul><ul><ul><li>situations, expectations, goals </li></ul></ul></ul><ul><ul><li>Memories </li></ul></ul><ul><ul><ul><li>what type – declarative, episodic, procedural </li></ul></ul></ul><ul><ul><li>Explicit representation of the self </li></ul></ul><ul><ul><ul><li>need for complex emotions, social interaction, coping </li></ul></ul></ul><ul><li>What types of reasoning are necessary? </li></ul><ul><ul><li>What-if </li></ul></ul><ul><ul><ul><li>… to generate expectations which influence emotions </li></ul></ul></ul><ul><ul><li>Causal explanation </li></ul></ul><ul><ul><ul><li>..important for attribution </li></ul></ul></ul>
  61. 61. Examples of Cognitive-Affective Architectures <ul><li>Emotion-augmented cognitive architectures </li></ul><ul><ul><li>Recognition-primed decision-making (Hudlicka) </li></ul></ul><ul><ul><li>Belief-Desire-Intention architectures (de Rosis…) </li></ul></ul><ul><ul><li>Soar ( Marinier, Jones, Henninger ) </li></ul></ul><ul><ul><li>ACT ( Ritter ) </li></ul></ul><ul><li>Generic - the ‘triune’ architectures </li></ul><ul><ul><li>Sloman et al., (Cog_Aff) or Sim_Agent (implementation) </li></ul></ul><ul><ul><li>Leventhal & Scherer (design) </li></ul></ul><ul><ul><li>Ortony, Normal and Revelle (ONR) (design) </li></ul></ul>
  62. 62. MAMID Cognitive-Affective Architecture Action Selection Cues: State of the world ( “growling dog”, “approaching”) Situations: Perceived state ( “aggressive dog” ) Expectations: Expected state (“dog will attack”, “bite wound”) Goals: Desired state (“protect self”) Actions: to accomplish goals (“climb tree”) Affective state & emotions: Negative valence High anxiety Low happiness Cues Actions Attention Situation Assessment Expectation Generator Affect Appraiser Goal Manager
  63. 63. “ The Triune” Generic Architectures (Sloman; Leventhal & Scherer; Ortony et al.; Arbib & Fellous..) Reactive Routine Reflective hardwired, fixed Well-learned behavior Awareness Compare alternatives - detect deviations Simple ‘what if’ Symbolic processing Approach / Avoid Simple drives Complex mental models Self representations & self-awareness Explicit predictions, causality… Meta-cognition Proto-affect Good/bad Primitive Emotions Good/bad Now/later Full fledged emotions -Basic -Complex flexible
  64. 64. Outline <ul><li>Motivation & Objectives </li></ul><ul><li>Emotions – Background Info </li></ul><ul><li>Developing Affective User Models </li></ul><ul><li>Framework for model analysis </li></ul><ul><li>Summary & Conclusions </li></ul>
  65. 65. Framework for Development, Analysis and Comparison of Models <ul><li>Which modeling objectives? </li></ul><ul><li>Which emotions? </li></ul><ul><li>Which aspects of emotions? (modality, functions, roles) </li></ul><ul><li>Which processes modeled? (appraisal, effects) </li></ul><ul><li>Which theory is basis of model? </li></ul><ul><li>What degree of model resolution </li></ul><ul><li>Which architecture? (modules, processes, data & control flow) </li></ul><ul><li>Which representational & reasoning formalisms used? </li></ul><ul><li>What validation method used? </li></ul>
  66. 66. Outline <ul><li>Motivation & Objectives </li></ul><ul><li>Emotions – Background Info </li></ul><ul><li>Developing Affective User Models </li></ul><ul><li>Framework for model analysis </li></ul><ul><li>Summary & Conclusions </li></ul>
  67. 67. Summary <ul><li>Need for including (some) emotions in (some) user models </li></ul><ul><li>Background info from emotion research in psychology and neuroscience </li></ul><ul><li>Guidelines for development of affective user models & cognitive-affective architectures </li></ul><ul><ul><li>Requirements for modeling core components of emotions: </li></ul></ul><ul><ul><ul><li>Cognitive appraisal </li></ul></ul></ul><ul><ul><ul><li>Emotion effects and emotion-cognition interactions </li></ul></ul></ul><ul><li>Framework for analysis of computational models of emotion </li></ul>
  68. 68. Successes & State of the Art (1) <ul><li>Research </li></ul><ul><ul><li>Terminological clarifications </li></ul></ul><ul><ul><li>Increasing interaction among experimentalists & modelers and theorists </li></ul></ul><ul><ul><li>Construction of process models of appraisal theories </li></ul></ul><ul><ul><li>Beginnings of process models of emotion effects </li></ul></ul><ul><ul><li>Convergence on architecture structure </li></ul></ul><ul><ul><li>Beginnings of principled analyses of modeling requirements </li></ul></ul>
  69. 69. Successes & State of the Art (2) <ul><li>Research </li></ul><ul><ul><li>Terminological clarifications </li></ul></ul><ul><ul><li>Increasing interaction among experimentalists & modelers and theorists </li></ul></ul><ul><ul><li>Construction of process models of appraisal theories </li></ul></ul><ul><ul><li>Beginnings of process models of emotion effects </li></ul></ul><ul><ul><li>Convergence on architecture structure </li></ul></ul><ul><ul><li>Beginnings of principled analyses of modeling requirements </li></ul></ul><ul><li>Applications </li></ul><ul><ul><li>Many ‘shallow’ models enhancing HCI and agents </li></ul></ul><ul><ul><li>Beginnings of ‘deep’ models driving synthetic agent & robot behavior </li></ul></ul><ul><ul><li>Emotion sensing & recognition </li></ul></ul><ul><ul><li>Emotion “expression” </li></ul></ul>Gratch & Marsella De Rosis Breazeal
  70. 70. Challenges <ul><li>Theories to guide model building </li></ul><ul><ul><li>Appraisal, mechanisms of emotion effects, meta-cognition & emotion </li></ul></ul><ul><ul><li>Emotion dynamics </li></ul></ul><ul><ul><ul><li>Multiple emotions & non-linear effects </li></ul></ul></ul><ul><ul><ul><li>Interaction among multiple modalities </li></ul></ul></ul><ul><li>Data </li></ul><ul><ul><li>Emotion experiments are difficult </li></ul></ul><ul><ul><li>Model data requirements frequently exceed data availability </li></ul></ul><ul><li>Model development </li></ul><ul><ul><li>Standards, shared data & ontologies, plug & play modules, guidelines </li></ul></ul><ul><ul><li>Can we build LTM’s or must they “evolve” through agent-environment interactions (Matthews, 2004) </li></ul></ul><ul><li>Validation </li></ul><ul><ul><li>Verification vs. validation </li></ul></ul><ul><ul><li>Developing validation criteria & benchmark problems </li></ul></ul>
  71. 71. Parting Thought <ul><li>“ Anyone can model emotions. That is easy. </li></ul><ul><li>But to model emotions </li></ul><ul><li>- in the right context, </li></ul><ul><li>- to the right degree, </li></ul><ul><li>- at the right time, </li></ul><ul><li>- for the right reason, and </li></ul><ul><li>- in the right way, </li></ul><ul><li>this is not easy.” </li></ul><ul><li>Paraphrasing “On anger”, Aristotle, Nichomachean Ethics </li></ul>
  72. 72. Depth of Feelings: Alternatives for Modeling Affect in User Models & Cognitive Architectures Eva Hudlicka Psychometrix Associates Blacksburg, US [email_address] psychometrixassociates.com TSD 2006 Masarykova Universita, Brno, Czech Republic September 15, 2006

×