cong thuc toan hoc   luong giac
Upcoming SlideShare
Loading in...5
×
 

cong thuc toan hoc luong giac

on

  • 477 views

 

Statistics

Views

Total Views
477
Views on SlideShare
477
Embed Views
0

Actions

Likes
0
Downloads
5
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

cong thuc toan hoc   luong giac cong thuc toan hoc luong giac Document Transcript

  • L­îng gi¸c I. B¶NG L¦îNG GI¸C 0 Sin  6 1 2 4 2 2 2 2 3 3 2 1 2 2 1 3 1 3 3 0 Cot  1 Tan  0 Cos  || 3 2 3 3 3 2 3 3 2 1  2 3 4 2 2 2  2 ||  3 -1 0  3 3 -1 1 0 II. §¼ng thøc, BÊt ®¼ng thøc hay gÆp: 1  , x ≠  k  ( k  Z) 2 cos x 2 1 2. 1 + cot 2 x  , x ≠ k (k Z) sin 2 x 3 3. cos3 x sin 3 x  cos 3 x sin 3 x  sin 4 x 4 3 3 4. cos x cos 3x  sin x sin 3x  cos3 2 x 1  cos 2 2 x 3  cos 4 x 5. cos 4 x  sin 4 x   2 4 2 1  3cos 2 x 5  3cos 4 x 6. cos 6 x  sin 6 x   4 8 A 7.  sin A  4 cos 2 1. 1 + tan 2 x  8. sin 2 A  4 sin A 9. sin 3 A  4 cos 3A 2 10. sin 4 A  4 sin 2 A 11. cos A  1  4 sin A 2 12. cos 2 A  1  4 cos A 13. cos 3 A  1  4 sin 3A 2 14. cos 4 A  1  4 cos 2 A 15. tan A   tan A 16. tan 2 A   tan 2 A 17. cot A cot B  1 A B tan  1 2 2 A A 19. cot   cot 2 2 18. tan 3 3 2 A 3 1   sin  2 2 3 A   sin 2  1 4 2 3 3  sin A  8 A 1  sin 2  8 9  sin 2 A  4 3 1   cos A  2 A 3 3 2   cos  2 2 A 9 2   cos 2  2 4 1  cos A  8 A 3 3  cos 2  8  sin A   tan A  3 A  tan 2  3 3 A 1 2 1 A  tan 2  3 3  tan 2 A  9  tan 2 5 6 1 2 3 2 3  3   3  0 -1 0 ||
  • III, quan hÖ gi÷a c¸c gi¸ trÞ l­îng gi¸c Sin Cos Tan Cot x  k -x  x Tan x Cot x x  k 2 - sin x Cos x - tan x - cot x Sin x - cos x - tan x - cot x Sin x Cos x  x x x 2 Cos x Sin x Cot x Tan x 2 Cosx - sin x - cot x - tan x - Sin x - cos x - tan x Cot x IV, C«ng thøc biÕn ®æi 1. C«ng thøc c«ng: sin(a  b)  sin a cos b  cos a sin b 5. C«ng thøc tæng -> tÝch cos(a  b)  cos a cos b  sin a sin b ab a b cos 2 2 ab a b sin a  sin b  2 cos sin 2 2 ab a b cos a  cos b  2 cos cos 2 2 ab a b cos a  cos b  2sin sin 2 2 sin( a  b) tan a  tan b  cos a cos b sin(b  a ) cot a  cot b  sin a sin b 2 tan a  cot a  sin 2a cot a  tan a  2cot 2a cos(a  b)  cos a cos b  sin a sin b tan a  tan b 1  tan a tan b tan a  tan b tan(a  b)  1  tan a tan b tan(a  b)  2. C«ng thøc nh©n ®«i, nh©n ba: sin 2a  2sin a cos a cos 2a  cos 2 a  sin 2 a  2cos 2 a  1 2 tan a tan 2 a  1  tan 2 a sin 3a  3sin a  4sin 3 a cos3a  4 cos3 a  3cos a tan 3a  3 tan a  tan 3 a 1  tan 2 a 3. C«ng thøc h¹ bËc: 1  cos 2 a 2 1  cos 2a cos 2 a  2 3sin a  sin 3a sin 3 a  4 3cos a  cos 3a cos3 a  4 sin 2 a  4. C«ng thøc tÝch -> tæng sin(a  b )  sin(a  b) 2 sin(a  b )  sin(a  b) cos a sin b  2 cos( a  b)  cos(a  b) cos a cos b  2 cos(a  b)  cos( s  b ) sin a sin b  2 sin a cos b  sin a  sin b  2sin * §Æc biÖt:    sin a  cos a  2 sin  a    2 cos( a  ) 4 4     sin a  cos a  2 sin(a  )   2 cos  a   4 4    sin a  3 cos a  2sin(a  )  2 cos( a  ) 3 6   sin a  3 cos a  2sin( a  )  2 cos( a  ) 3 6   3 sin a  cos a  2sin(a  )  2 cos( a  ) 6 3    3 sin a  cos a  2sin( a  )  2 cos( a  ) 6 3 a 6. BiÓu diÔn qua t  tan 2 2t sin a  1 t2 1 t2 cos a  1 t 2 2t tan a  1 t 2
  • V. HÖ thøc L­îng trong tam gi¸c: 1. §Þnh lý Sin: a b c    2R sin A sin B sin C 2 2 2 2. §Þnh lý Cosin: a  b  c  2bc cos A -> HÖ qu¶: cos A  b2  c 2  a 2 2bc 3. §Þnh lý h×nh chiÕu: a  b cos C  c cos B; b  c cos A  a cos C ; c  a cos B  b cos A a  r (cot B C A C A B  cot ); b  r (cot  cot ); c  r (cot  cot ) 2 2 2 2 2 2 4. §Þnh lý Cotang: cot A  R(b 2  c 2  a 2 ) (b 2  c 2  a 2 )  abc 4S 5. C«ng thøc ®­êng trung tuyÕn: 2 ma  b2  c 2 a 2  2 4 6. C«ng thøc ph©n gi¸c: A 2  2 bcp ( p  a ) bc bc 2bc cos la  7. C«ng thøc diÖn tÝch: 1 1 abc aha  ab sin C  2 R 2 sin A sin B sin C   pr  ( p  a )ra  2 2 4R S p ( p  a )( p  b)( p  c) 8. §é dµi c¸c b¸n kÝnh: abc S S A A ; r  ; ra  ; r  ( p  a ) tan ; ra  p tan 4S 2 2 p pa A A B C r  4 R sin ; ra  4 R sin cos cos 2 2 2 2 9. Trong tam gi¸c ABC cã: sin( B  C )  sin A; tan( B  C )   tan A; cos( B  C )   cos A;cot( B  C )   cot A R sin BC A BC A BC A BC A  cos ; tan  cot ;cos  sin ;cot  tan 2 2 2 2 2 2 2 2 VI, Ph­¬ng tr×nh l­îng gi¸c c¬ b¶n:    1  x   2  k 2  sin x  0  x  k   1  x   k 2 2   1  x    k 2   cos   0  x   k 2  1  x  k 2  ( k Z )     1  x   4  k  tan x   0  x  k   1  x   k 4      1  x   4  k   cot x  0  x   k  2   1  x   k  4  ( k Z )