Rによるやさしい統計学 第16章 : 因子分析

15,492 views

Published on

Published in: Technology
0 Comments
12 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
15,492
On SlideShare
0
From Embeds
0
Number of Embeds
896
Actions
Shares
0
Downloads
72
Comments
0
Likes
12
Embeds 0
No embeds

No notes for slide

Rによるやさしい統計学 第16章 : 因子分析

  1. 1. R 16 @holidayworking 2006 6 26 @holidayworking () R 16 2006 6 26 1 / 18
  2. 2. 1 2 3 R @holidayworking () R 16 2006 6 26 2 / 18
  3. 3. ) Twitter: @holidayworking : : : T-SQUARE F1 : Java, PL/SQL: Python, Ruby: @holidayworking () R 16 2006 6 26 3 / 18
  4. 4. i i i i : 5 @holidayworking () R 16 2006 6 26 4 / 18
  5. 5. R R factanal factanal(x, factors, rotation = "varimax") x factors rotation (varimax) (promax) @holidayworking () R 16 2006 6 26 5 / 18
  6. 6. 5 1 60.00 64.00 55.00 55.00 55.00 2 41.00 44.00 46.00 55.00 44.00 3 55.00 63.00 62.00 58.00 70.00 4 60.00 45.00 44.00 53.00 49.00 5 58.00 56.00 61.00 67.00 58.00 ( ) 195 64.00 47.00 52.00 42.00 48.00 196 39.00 36.00 35.00 38.00 36.00 197 42.00 43.00 43.00 57.00 39.00 198 64.00 58.00 47.00 33.00 56.00 199 49.00 47.00 46.00 49.00 54.00 200 51.00 51.00 49.00 50.00 46.00 @holidayworking () R 16 2006 6 26 6 / 18
  7. 7. > <- cor( ) > 1.0000000 0.5500166 0.1953799 0.1630274 0.4275140 0.5500166 1.0000000 0.3317530 0.2944938 0.5178159 0.1953799 0.3317530 1.0000000 0.5301135 0.4575891 0.1630274 0.2944938 0.5301135 1.0000000 0.3876493 0.4275140 0.5178159 0.4575891 0.3876493 1.0000000 0.55 0.53 4 0.39 0.52 ⇒ @holidayworking () R 16 2006 6 26 7 / 18
  8. 8. 1 > eigen( ) $values [1] 2.5573782 1.0656034 0.5058941 0.4461472 0.4249772 $vectors [,1] [,2] [,3] [,4] [,5] [1,] -0.4040025 0.57915506 -0.3526733 -0.30988872 0.53004894 [2,] -0.4791362 0.36314955 -0.1046695 0.07323541 -0.78881668 [3,] -0.4380493 -0.48395278 0.2494573 -0.71311577 -0.05603054 [4,] -0.4064807 -0.54402387 -0.6062633 0.39786745 0.11383232 [5,] -0.5000967 0.05029462 0.6594556 0.48142803 0.28411115 @holidayworking () R 16 2006 6 26 8 / 18
  9. 9. > <- factanal( , factors=2) > print( , cutoff=0) Call: factanal(x = , factors = 2) Uniquenesses Loadings Uniquenesses: SS loadings 0.471 0.395 0.379 0.548 0.491 Proportion Var Loadings: Cumulative Var Factor1 Factor2 0.722 0.084 0.730 0.268 0.177 0.768 0.156 0.654 0.537 0.470 Factor1 Factor2 SS loadings 1.399 1.317 Proportion Var 0.280 0.263 Cumulative Var 0.280 0.543 Test of the hypothesis that 2 factors are sufficient. The chi square statistic is 0.08 on 1 degree of freedom. @holidayworking () The p-value is 0.782 R 16 2006 6 26 9 / 18
  10. 10. 1 > <- 1 - $uniquenesses > 0.5288198 0.6049597 0.6213085 0.4523362 0.5087881 @holidayworking () R 16 2006 6 26 10 / 18
  11. 11. 1 2 0.722 0.084 0.529 0.730 0.268 0.605 0.537 0.470 0.509 0.177 0.768 0.621 0.156 0.654 0.452 0.722 1.317 1 ⇒ 2 ⇒ @holidayworking () R 16 2006 6 26 11 / 18
  12. 12. @holidayworking () R 16 2006 6 26 12 / 18
  13. 13. > <- factanal( , factors=2,rotation="promax") > print( , cutoff=0) Call: factanal(x = , factors = 2, rotation = "promax") Uniquenesses: 0.471 0.395 0.379 0.548 0.491 Loadings: Factor1 Factor2 0.801 -0.156 0.749 0.050 -0.051 0.815 -0.038 0.692 0.461 0.348 Factor1 Factor2 SS loadings 1.419 1.291 Proportion Var 0.284 0.258 Cumulative Var 0.284 0.542 Test of the hypothesis that 2 factors are sufficient. The chi square statistic is 0.08 on 1 degree of freedom. @holidayworking () The p-value is 0.782 R 16 2006 6 26 13 / 18
  14. 14. > <- factanal( , factors=2,rotation="none") > print( , cutoff=0) Call: factanal(x = , factors = 2, rotation = "none") Uniquenesses: 0.471 0.395 0.379 0.548 0.491 Loadings: Factor1 Factor2 0.583 -0.435 0.714 -0.307 0.657 0.436 0.563 0.368 0.713 -0.028 Factor1 Factor2 SS loadings 2.106 0.611 Proportion Var 0.421 0.122 Cumulative Var 0.421 0.543 Test of the hypothesis that 2 factors are sufficient. The chi square statistic is 0.08 on 1 degree of freedom. @holidayworking () The p-value is 0.782 R 16 2006 6 26 14 / 18
  15. 15. > <- promax(loadings( ), m=4) > print( ) $loadings Loadings: Factor1 Factor2 0.801 -0.156 0.749 0.815 0.692 0.461 0.348 Factor1 Factor2 SS loadings 1.419 1.291 Proportion Var 0.284 0.258 Cumulative Var 0.284 0.542 $rotmat [,1] [,2] [1,] 0.6062459 0.5303245 [2,] -1.0284319 1.0695617 @holidayworking () R 16 2006 6 26 15 / 18
  16. 16. rotmat > <- solve(t( $rotmat)%*% $rotmat) > [,1] [,2] [1,] 1.0000000 0.5462117 [2,] 0.5462117 1.0000000 1 2 0.5462117 @holidayworking () R 16 2006 6 26 16 / 18
  17. 17. R factanal @holidayworking () R 16 2006 6 26 17 / 18
  18. 18. @holidayworking () R 16 2006 6 26 18 / 18

×