Upcoming SlideShare
×

# モナモナ言うモナド入門.tar.gz

2,120 views
1,918 views

Published on

「モナモナ言うモナド入門」の短縮版。

4 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
Your message goes here
• Be the first to comment

Views
Total views
2,120
On SlideShare
0
From Embeds
0
Number of Embeds
197
Actions
Shares
0
9
0
Likes
4
Embeds 0
No embeds

No notes for slide

### モナモナ言うモナド入門.tar.gz

1. 1. モナモナ言う モナド入門.tar.gz 2012-11-18 hiratara
2. 2. 100分で話して来た
3. 3. 超短縮版
4. 4. 話す内容• 抽象化オタクの更なる高みを目指す• 「モナドは自己関手の圏のモノイド」 という雑学
5. 5. 大統一理論２
7. 7. そのとき Philip Wadlerの脳裏に閃光が走った！ ※この話はフィクションです
8. 8. モノイダル圏双関手□と自然同型α、λ、ρがある圏 A B A□B f g f□g A’ B’ A’□B’
9. 9. (モノイダル圏の) モノイド η□M M□η I□M M□M M□I μ λ ρ α M□μ M□M(M□M)□M M□(M□M) M μ□M μ M□M M
10. 10. Monoid a(1) prod (id, mappend’)(a, a), a ((x, y), z) -> (x, (y, z)) a, (a, a) (a, a) prod (mappend’, id) mappend’ mappend’ (a, a) prod (f, g) (x, y) = (f x, g y) a mappend’ = uncurry mappend
11. 11. Monoid a(1) (x <> y) <> z = x <> (y <> z) prod (id, mappend’)(a, a), a ((x, y), z) -> (x, (y, z)) a, (a, a) (a, a) prod (mappend’, id) mappend’ mappend’ (a, a) prod (f, g) (x, y) = (f x, g y) a mappend’ = uncurry mappend
12. 12. Monoid a(2) prod (mempty’, id) prod (id, mempty’)((), a) (a, a) (a, ()) mappend’ snd fst a mempty’ = const mempty
13. 13. Monoid a(2) mempty <> x = x x <> mempty = x prod (mempty’, id) prod (id, mempty’)((), a) (a, a) (a, ()) mappend’ snd fst a mempty’ = const mempty
14. 14. Monoid a(2) mempty <> x = x x <> mempty = x prod (mempty’, id) prod (id, mempty’)((), a) (a, a) (a, ()) mappend’ snd fst a ”集合” mempty’ = const mempty
15. 15. Monoidは 集合圏のモノイド
16. 16. モナド則• 以下と同値 join . fmap join = join . join join . fmap return = join . return = id• 証明は http://ja.wikibooks.org/wiki/Haskell/ %E5%9C%8F%E8%AB%96 を参照
17. 17. Monad m(1) id fmap joinmmma mmma mma join join joinmma ma
18. 18. Monad m(1) join . fmap join = join . join id fmap joinmmma mmma mma join join joinmma ma
19. 19. Monad m(2) return fmap returnma mma ma join id id ma
20. 20. Monad m(2) join . fmap return = id join . return = id return fmap returnma mma ma join id id ma
21. 21. Monad m(2) join . fmap return = id join . return = id return fmap returnma mma ma join id id ma ”自己関手”