Hilda María Barrero Tique<br />Grupo 51 Aula 806<br />TOPOLOGIA DE RED LAND<br />Es un sistema de comunicaciones de alta v...
Topologia de red land
Topologia de red land
Topologia de red land
Topologia de red land
Topologia de red land
Topologia de red land
Topologia de red land
Topologia de red land
Topologia de red land
Topologia de red land
Topologia de red land
Topologia de red land
Upcoming SlideShare
Loading in …5
×

Topologia de red land

2,062 views

Published on

Published in: Education
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
2,062
On SlideShare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
17
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Topologia de red land

  1. 1. Hilda María Barrero Tique<br />Grupo 51 Aula 806<br />TOPOLOGIA DE RED LAND<br />Es un sistema de comunicaciones de alta velocidad que conecta microcomputadoras o pc que se encuentran cercanas, por lo general adentro de un mismo edificio, una lan  consta de hardware y software de red y sirven para conectar las pc que están aisladas; da la posibilidad de compartir entre ellas programas, información y recursos, comunidades de disco, directorios e impresoras.<br />Red de área locales (LAN) <br />Una LAN es un segmento de red que tiene conectadas estaciones de trabajo y servidores o un conjunto de segmentos de red interconectados, generalmente dentro de la misma zona. Por ejemplo un edificio.<br />Topología<br />La topología o forma lógica de una red se define como la forma de tender el cable a estaciones de trabajo individuales; por muros, suelos y techos del edificio. Existe un número de factores a considerar para determinar cual topología es la más apropiada para una situación dada. Existen tres topologías comunes:<br />AnilloLas estaciones están unidas unas con otras formando un círculo por medio de un cable común (Figura 1). El último nodo de la cadena se conecta al primero cerrando el anillo. Las señales circulan en un solo sentido alrededor del círculo, regenerándose en cada nodo. Con esta metodología, cada nodo examina la información que es enviada a través del anillo. Si la información no está dirigida al nodo que la examina, la pasa al siguiente en el anillo. La desventaja del anillo es que si se rompe una conexión, se cae la red completa. <br />Estrella <br />La red se une en un único punto, normalmente con un panel de control centralizado, como un concentrador de cableado (Figura 2). Los bloques de información son dirigidos a través del panel de control central hacia sus destinos. Este esquema tiene una ventaja al tener un panel de control que monitorea el tráfico y evita las colisiones y una conexión interrumpida no afecta al resto de la red.<br />Figura 2<br />" Bus" <br />Las estaciones están conectadas por un único segmento de cable (Figura 3). A diferencia del anillo, el bus es pasivo, no se produce regeneración de las señales en cada nodo. Los nodos en una red de " bus" transmiten la información y esperan que ésta no vaya a chocar con otra información transmitida por otro de los nodos. Si esto ocurre, cada nodo espera una pequeña cantidad de tiempo al azar, después intenta retransmitir la información.<br />Híbridas <br />El bus lineal, la estrella y el anillo se combinan algunas veces para formar combinaciones de redes híbridas.* Anillo en estrellaEsta topología se utiliza con el fin de facilitar la administración de la red. Físicamente, la red es una estrella centralizada en un concentrador, mientras que a nivel lógico, la red es un anillo.* " Bus" en estrellaEl fin es igual a la topología anterior. En este caso la red es un " bus" que se cablea físicamente como una estrella por medio de concentradores.* Estrella jerárquicaEsta estructura de cableado se utiliza en la mayor parte de las redes locales actuales, por medio de concentradores dispuestos en cascada par formar una red jerárquica.<br />ESPECTRO ELECTROMAGNÉTICO<br />Debido a su longitud de onda, la radiación electromagnética recibe diferentes nombres, y varía desde los energéticos rayos gamma (con una longitud de onda del orden de picómetros) hasta las ondas de radio (longitudes de onda del orden de kilómetros), pasando por el espectro visible (cuya longitud de onda está en el rango de las décimas de micrómetro). El rango completo de longitudes de onda es lo que se denomina el espectro electromagnético.<br />El espectro visible es un minúsculo intervalo que va desde la longitud de onda correspondiente al color violeta (aproximadamente 400 nanómetros) hasta la longitud de onda correspondiente al color rojo (aproximadamente 700 nm).<br />En telecomunicaciones se clasifican las ondas mediante un convenio internacional de frecuencias en función del empleo al que están destinadas:<br />Clasificación de las ondas en telecomunicacionesSiglaRangoDenominaciónEmpleoVLF10 kHz a 30 kHzMuy baja frecuenciaRadio gran alcanceLF30 kHz a 300 kHzBaja frecuenciaRadio, navegaciónMF300 kHz a 3 MHzFrecuencia mediaRadio de onda mediaHF3 MHz a 30 MHzAlta frecuenciaRadio de onda cortaVHF30 MHz a 300 MHzMuy alta frecuenciaTV, radioUHF300 MHz a 3 GHzUltra alta frecuenciaTV, radar, telefonía móvilSHF3 GHz a 30 GHzSuper alta frecueciaRadarEHF30 GHz a 300 GHzExtra alta frecuenciaRadar<br />Fenómenos asociados a la radiación electromagnética <br />Interacción entre radiación electromagnética y conductores <br />Cuando un alambre o cualquier objeto conductor, tal como una antena, conduce corriente alterna, la radiación electromagnética se propaga en la misma frecuencia que la corriente.<br />De forma similar, cuando una radiación electromagnética incide en un conductor eléctrico, hace que los electrones de su superficie oscilen, generándose de esta forma una corriente alterna cuya frecuencia es la misma que la de la radiación incidente. Este efecto se usa en las antenas, que pueden actuar como emisores o receptores de radiación electromagnética.<br />Estudios mediante análisis del espectro electromagnético <br />Se puede obtener mucha información acerca de las propiedades físicas de un objeto a través del estudio de su espectro electromagnético, ya sea por la luz emitida (radiación de cuerpo negro) o absorbida por él. Esto es la espectroscopia y se usa ampliamente en astrofísica. Por ejemplo, los átomos de hidrógeno tienen una frecuencia natural de oscilación, por lo que emiten ondas de radio, las cuales tiene una longitud de onda de 21,12 cm.<br />Penetración de la radiación electromagnética <br />En función de la frecuencia, las ondas electromagnéticas pueden no atravesar medios conductores. Esta es la razón por la cual las transmisiones de radio no funcionan bajo el mar y los teléfonos móviles se queden sin cobertura dentro de una caja de metal. Sin embargo, como la energía ni se transforma, cuando una onda electromagnética choca con un conductor pueden suceder dos cosas. La primera es que se transformen en calor: este efecto tiene aplicación en los hornos de microondas. La segunda es que se reflejen en la superficie del conductor (como en un espejo).<br />Refracción <br />La velocidad de propagación de la radiación electromagnética en el vacío es c. La teoría electromagnética establece que:<br />siendo ε0 y μ0 la permitividad eléctrica y la permeabilidad magnética del vacío respectivamente.<br />En un medio material la permitividad eléctrica ε tiene un valor diferente a ε0. Lo mismo ocurre con la permeabilidad magnética μ y, por tanto, la velocidad de la luz en ese medio v será diferente a c. La velocidad de propagación de la luz en medios diferentes al vacío es siempre inferior a c.<br />Cuando la luz cambia de medio experimenta una desviación que depende del ángulo con que incide en la superficie que separa ambos medios. Se habla, entonces, de ángulo incidente y ángulo de transmisión. Este fenómeno, denominado refracción, es claramente apreciable en la desviación de los haces de luz que inciden en el agua. La velocidad de la luz en un medio se puede calcular a partir de su permitividad eléctrica y de su permeabilidad magnética de la siguiente manera:<br />Dispersión <br />Dispersión de la luz blanca en un prisma.<br />La permitividad eléctrica y la permeabilidad magnética de un medio diferente del vacío dependen, además de la naturaleza del medio, de la longitud de onda de la radiación. De esto se desprende que la velocidad de propagación de la radiación electromagnética en un medio depende también de la longitud de onda de dicha radiación. Por tanto, la desviación de un rayo de luz al cambiar de medio será diferente para cada color (para cada longitud de onda). El ejemplo más claro es el de un haz de luz blanca que se " descompone" en colores al pasar por un prisma. La luz blanca es realmente la suma de haces de luz de distintas longitudes de onda, que son desviadas de manera diferente. Este fenómeno se llama dispersión. Es el causante de la aberración cromática, el halo de colores que se puede apreciar alrededor de los objetos al observarlos con instrumentos que utilizan lentes como prismáticos o telescopios.<br />Acceso a Internet, Tecnologías de conexión.<br />RTC      La Red Telefónica Conmutada (RTC) —también llamada Red Telefónica Básica (RTB)— es la red original y habitual (analógica). Por ella circula habitualmente las vibraciones de la voz, las cuales son traducidas en impulsos eléctricos que se transmiten a través de dos hilos de cobre. A este tipo de comunicación se denomina analógica. La señal del ordenador, que es digital, se convierte en analógica a través del módem y se transmite por la línea telefónica. Es la red de menor velocidad y calidad.       La conexión se establece mediante una llamada telefónica al número que le asigne su proveedor de internet. Este proceso tiene una duración mínima de 20 segundos. Puesto que este tiempo es largo, se recomienda que la programación de desconexión automática no sea inferior a 2 minutos. Su coste es de una llamada local, aunque también hay números especiales con tarifa propia.       Para acceder a la Red sólo necesitaremos una línea de teléfono y un módem, ya sea interno o externo. La conexión en la actualidad tiene una velocidad de 56 kbits por segundo y se realiza directamente desde un PC o en los centros escolares a través de router o proxy. RDSILa Red Digital de Servicios Integrados (RDSI) envía la información codificada digitalmente, por ello necesita un adaptador de red, módem o tarjeta RDSI que adecúa la velocidad entre el PC y la línea. Para disponer de RDSI hay que hablar con un operador de telecomunicaciones para que instale esta conexión especial que, lógicamente, es más cara pero que permite una velocidad de conexión digital a 64 kbit/s en ambos sentidos.El aspecto de una tarjeta interna RDSI es muy parecido a un módem interno para RTC.3382010-815340La RDSI integra multitud de servicios, tanto transmisión de voz, como de datos, en un único acceso de usuario que permite la comunicación digital entre los terminales conectados a ella (teléfono, fax, ordenador, etc.)Sus principales características son:Conectividad digital punto a punto.Conmutación de circuitos a 64 kbit/s.Uso de vías separadas para la señalización y para la transferencia de información (canal adicional a los canales de datos).La conexión RDSI divide la línea telefónica en tres canales: dos B o portadores, por los que circula la información a la velocidad de 64 kbps, y un canal D, de 16 kbps, que sirve para gestionar la conexión. Se pueden utilizar los dos canales B de manera independiente (es posible hablar por teléfono por uno de ellos y navegar por Internet simultáneamente), o bien utilizarlos de manera conjunta, lo que proporciona una velocidad de transmisión de 128 kbps. Así pues, una conexión que utilice los dos canales (p.e. videoconferencia) supondrá la realización de dos llamadas telefónicas. ADSLADSL (Asymmetric Digital Subscriber Line o Línea de Abonado Digital Asimétrica) es una tecnología que, basada en el par de cobre de la línea telefónica normal, la convierte en una línea de alta velocidad. Permite transmitir simultáneamente voz y datos a través de la misma línea telefónica.En el servicio ADSL el envío y recepción de los datos se establece desde el ordenador del usuario a través de un módem ADSL. Estos datos pasan por un filtro (splitter), que permite la utilización simultánea del servicio telefónico básico (RTC) y del servicio ADSL. Es decir, el usuario puede hablar por teléfono a la vez que está navegando por Internet, para ello se establecen tres canales independientes sobre la línea telefónica estándar: Dos canales de alta velocidad (uno de recepción de datos y otro de envío de datos). Un tercer canal para la comunicación normal de voz (servicio telefónico básico).Los dos canales de datos son asimétricos, es decir, no tienen la misma velocidad de transmisión de datos. El canal de recepción de datos tiene mayor velocidad que el canal de envío de datos.Esta asimetría, característica de ADSL, permite alcanzar mayores velocidades en el sentido red -> usuario, lo cual se adapta perfectamente a los servicios de acceso a información en los que normalmente, el volumen de información recibido es mucho mayor que el enviado.ADSL permite velocidades de hasta 8 Mbps en el sentido red->usuario y de hasta 1 Mbps en el sentido usuario->red. Actualmente, en España estas velocidades son de hasta 2 Mbps en el sentido red->usuario y de 300 Kbps en el sentido usuario->red. La velocidad de transmisión también depende de la distancia del módem a la centralita, de forma que si la distancia es mayor de 3 Kilómetros se pierde parte de la calidad y la tasa de transferencia empieza a bajar.Un esquema de conexión ADSL podría ser:Si quiere información sobre la cobertura y despliegue de medios ADSL en la red de Telefónica de España, puede encontrarla en la siguiente dirección:Centrales Locales de ADSL URL: http://www.mityc.es/setsi/adsl/index.htmCable Normalmente se utiliza el cable coaxial que también es capaz de conseguir tasas elevadas de transmisión pero utilizando una tecnología completamente distinta. En lugar de establecer una conexión directa, o punto a punto, con el proveedor de acceso, se utilizan conexiones multipunto, en las cuales muchos usuarios comparten el mismo cable. Las principales consecuencias del uso de esta tecnología son:Cada nodo (punto de conexión a la Red) puede dar servicio a entre 500 y 2000 usuarios. Para conseguir una calidad óptima de conexión la distancia entre el nodo y el usuario no puede superar los 500 metros. No se pueden utilizar los cables de las líneas telefónicas tradicionales para realizar la conexión, siendo necesario que el cable coaxial alcance físicamente el lugar desde el que se conecta el usuario. La conexión es compartida, por lo que a medida que aumenta el número de usuarios conectados al mismo nodo, se reduce la tasa de transferencia de cada uno de ellos.Esta tecnología puede proporcionar una tasa de 30 Mbps de bajada como máximo, pero los módems normalmente están fabricados con una capacidad de bajada de 10 Mbps y 2 Mbps de subida. De cualquier forma, los operadores de cable normalmente limitan las tasas máximas para cada usuario a niveles muy inferiores a estos, sobre todo en la dirección de subida. Vía satéliteEn los últimos años, cada vez más compañías están empleando este sistema de transmisión para distribuir contenidos de Internet o transferir ficheros entre distintas sucursales. De esta manera, se puede aliviar la congestión existente en las redes terrestres tradicionales.El sistema de conexión que generalmente se emplea es un híbrido de satélite y teléfono. Hay que tener instalada una antena parabólica digital, un acceso telefónico a Internet (utilizando un módem RTC, RDSI, ADSL o por cable), una tarjeta receptora para PC, un software específico y una suscripción a un proveedor de satélite. El cibernauta envía sus mensajes de correo electrónico y la petición de las páginas Web, que consume muy poco ancho de banda,  mediante un módem tradicional, pero la recepción se produce por una parabólica, ya sean programas informáticos, vídeos o cualquier otro material que ocupe muchos megas. La velocidad de descarga a través del satélite puede situarse en casos óptimos en torno a 400 Kbps. Redes InalámbricasLas redes inalámbricas o wireless son una tecnología normalizada por el IEEE que permite montar redes locales sin emplear ningún tipo de cableado, utilizando infrarrojos u ondas de radio a frecuencias desnormalizadas (de libre utilización). Están compuestas por dos elementos: - Punto de acceso (AP) o “transceiver”: es la estación base que crea un área de cobertura donde los usuarios se pueden conectar. El AP cuenta con una o dos antenas y con una o varias puertas Ethernet.- Dispositivos clientes: son elementos que cuentan con tarjeta de red inalámbrica. Estos proporcionan un interfaz entre el sistema operativo de red del cliente y las ondas, a través de una antena.El usuario puede configurar el canal (se suelen utilizar las bandas de 2,4 Ghz y 5Ghz) con el que se comunica con el punto de acceso por lo que podría cambiarlo en caso de interferencias. En España se nos impide transmitir en la totalidad de la banda 2,4 Ghz debido a que parte de esta banda está destinada a usos militares. La velocidad con el punto de acceso disminuye con la distancia. Los sistemas inalámbricos de banda ancha se conocen cómo BWS (Broadband Wireless Systems) y uno de los más atractivos, son los sistemas LMDS. ¿Qué es Bluetooth? El Bluetooth Special Interest Group (SIG), una asociación comercial formada por líderes en telecomunicación, informática e industrias de red, está conduciendo el desarrollo de la tecnología inalámbrica Bluetooth y llevándola al mercado.La tecnología inalámbrica Bluetooth es una tecnología de ondas de radio de corto alcance (2.4 gigahertzios de frecuencia) cuyo objetivo es el simplificar las comunicaciones entre dispositivos informáticos, como ordenadores móviles, teléfonos móviles, otros dispositivos de mano y entre estos dispositivos e Internet. También pretende simplificar la sincronización de datos entre los dispositivos y otros ordenadores. Permite comunicaciones, incluso a través de obstáculos, a distancias de hasta unos 10 metros. Esto significa que, por ejemplo, puedes oír tus mp3 desde tu comedor, cocina, cuarto de baño, etc. También sirve para crear una conexión a Internet inalámbrica desde tu portátil usando tu teléfono móvil. Un caso aún más práctico es el poder sincronizar libretas de direcciones, calendarios etc en tu PDA, teléfono móvil, ordenador de sobremesa y portátil automáticamente y al mismo tiempo.Los promotores de Bluetooth incluyen Agere, Ericsson, IBM, Intel, Microsoft, Motorola, Nokia y Toshiba, y centenares de compañías asociadas.¿De dónde viene el nombre Bluetooth? El nombre viene de Harald Bluetooth, un Vikingo y rey de Dinamarca a de los años 940 a 981, fue reconocido por su capacidad de ayudar a la gente a comunicarse. Durante su reinado unió Dinamarca y Noruega. ¿Qué puedo hacer con los productos con tecnología Bluetooth? Las posibilidades son casi ilimitadas, pero a continuación enumeramos algunas de las posibilidades actuales: Eliminación de la necesidad de conexiones por cable entre los productos y accesorios electrónicos. Intercambio de archivos, tarjetas de visita, citas del calendario, etc. entre usuarios de Bluetooth. Sincronización y transferencia de archivos entre dispositivos. Conexión a determinados contenidos en áreas públicas. Como mandos a distancia funcionan como llave, entradas y monederos electrónicos. ¿En qué clases de productos puedo esperar encontrar la tecnología Bluetooth? La tecnología inalámbrica Bluetooth es única en su amplitud de usos. Los acoplamientos se pueden establecer entre grupos de productos simultáneamente o entre productos individuales con Internet. Esta flexibilidad, además de que los productos con tecnología Bluetooth tienen que ser calificados y pasar pruebas de interoperabilidad por el Bluetooth Special Interest Group antes de su lanzamiento, ha hecho que una amplia gama de segmentos de mercado soporte esta tecnología, incluyendo técnicos de software, vendedores de silicio, fabricantes de periféricos y cámaras fotográficas, fabricantes de PCs móviles y técnicos de dispositivos de mano, fabricantes de coches, y fabricantes de equipos de pruebas y medidas. ¿Cuáles son las diferencias entre Wi-Fi y la tecnología de radio Bluetooth? Las tecnologías inalámbricas Bluetooth y Wi-Fi son tecnologías complementarias. La tecnología Bluetooth se diseña para sustituir los cables entre los teléfonos móviles, ordenadores portátiles, y otros dispositivos informáticos y de comunicación dentro de un radio de 10 metros. Un router típico con Wi-Wi-Fi puede tener un radio de alcance de 45 m en interiores y 90 m al aire libre.Se espera que ambas tecnologías coexistan: que la tecnología Bluetooth sea utilizada como un reemplazo del cable para dispositivos tales como PDAs, teléfonos móviles, cámaras fotográficas, altavoces, auriculares etc. Y que la tecnología Wi-Wi-Fi sea utilizada para el acceso Ethernet inalámbrico de alta velocidad. WIFI. La comunicación inalámbrica Cuando hablamos de WIFI nos referimos a una de las tecnologías de comunicación inálambrica mediante ondas más utilizada hoy en día. WIFI, también llamada WLAN (wireless lan, red inalámbrica) o estándar IEEE 802.11. WIFI no es una abreviatura de Wireless Fidelity, simplemente es un nombre comercial.Como estructura básica de una red Wi-Fi podamos destacar:El Punto de Acceso: Dispositivo que nos permite comunicar todos los elementos de la red con el Router. Cada punto de acceso tiene un alcance máximo de 90 metros en entornos cerrados. En lugares abiertos puede ser hasta tres veces superior. Tarjeta de Red Wireless: Permite al usuario conectarse en su punto de acceso más próximo. Router: Permite conectarse un Punto de Acceso a Internet En la actualidad Wi-Fi utiliza los estándares 802.11a, 802.11b y 802.11g, siendo éste último compatible con el 802.11b; pero ahora, según las nuevas investigaciones, podremos ver en una próxima oportunidad la implementación del estándar 802.11n.El estándar 802.11n está basado en una tecnología que podría ofrecer velocidades de transmisión de datos de hasta 300 Mbps.El estándar 802.11n, en el que está trabajando el Task Group 'n' Synchronization (TGn Sync), solo alcanzó el 49 por ciento de los votos. Boyd Bangerter, director del laboratorio de radiocomunicaciones de Intel, dijo que esperaba que esto sucediera. “Es el riesgo que se corre cuando se tiene que contar con un estándar que necesita una aprobación en consenso”.Desde hace un año, más de 30 propuestas se han escuchado para definir las especificaciones del estándar 802.11n. Actualmente, la industria se ha dividido en dos sectores: por un lado se encuentra el grupo Wyse, liderado por Airgo Networks, y que incluye otras compañías como Broadcom, Motorola, Nokia, France Telecom y Texas Instruments; en el otro grupo está el TGn Sync, apoyado por Intel, Atheros Communications, Nortel, Samsung, Sony, Qualcomm, Philips y Panasonic.Sin embargo, las dos ideas están basadas en una tecnología llamada Múltiple Entrada/Múltiple Salida (MIMO, por sus siglas en inglés), que podría alcanzar velocidades en redes inalámbricas de hasta 300 megabits por segundo, aunque el estándar proyecta un mínimo de 100 Mbps. Con las tecnologías 802.11a y 11g, que se utilizan hoy en día, las velocidades son de entre 20 y 24 Mbps.LMDS El LMDS (Local Multipoint Distribution System) es un sistema de comunicación de punto a multipunto que utiliza ondas radioelétricas a altas frecuencias, en torno a 28 ó 40 GHz. Las señales que se transmiten pueden consistir en voz, datos, internet y vídeo. Este sistema utiliza como medio de transmisión el aire para enlazar la red troncal de telecomunicaciones con el abonado. En este sentido, se configura un nuevo bucle de abonado, con gran ancho de banda, distinto al tradicional par de hilos de cobre que conecta cada terminal doméstico con la centralita más próxima. Las bandas de frecuencias utilizadas ocupan un rango en torno a 2 Ghz, para las cuales la atenuación por agentes atmosféricos es mínima. Debido a las altas frecuencias y al amplio margen de operación, es posible conseguir un gran ancho de banda de comunicaciones,  con velocidades de acceso que pueden alcanzar los 8 Mbps. El sistema opera en el espacio local mediante las estaciones base y las antenas receptoras usuarias, de forma bidireccional. Se necesita que haya visibilidad directa desde la estación base hasta el abonado, por lo cual pueden utilizarse repetidores si el usuario está ubicado en zonas sin señal. En España, el servicio se ofrece en las frecueNcias de 3,5 ó 26 GHz. El sistema de 26 GHz ofrece mayor capacidad de transmisión, con un alcance de hasta 5 Km. En cambio, el sistema de 3,5 GHz puede conseguir un alcance mayor, de hasta 10 Km., aunque tiene menor capacidad, y puede ofrecer velocidades de hasta 2 Mbps. Este segundo sistema es, por tanto, más económico que el primero. El LMDS ofrece las mismas posibilidades en cuanto a servicios, velocidad y calidad que el cable de fibra óptica, coaxial o el satélite. La ventaja principal respecto al cable consiste en que puede ofrecer servicio en zonas donde el cable nunca llegaría de forma rentable. Respecto al satélite, ofrece la ventaja de solucionar el problema de la gran potencia de emisión que se dispersa innecesariamente en cubrir amplias extensiones geográficas. Con LMDS la inversión se rentabiliza de manera muy rápida respecto a los sistemas anteriores. Además, los costes de reparación y mantenimiento de la red son bajos, ya que al ser la comunicación por el aire, la red física como tal no existe. Por tanto,  este sistema se presenta como un serio competidor para los sistemas de banda ancha. <br />

×