C. menentukan nilai optimum dari sistem pertidaksamaan linier

  • 3,890 views
Uploaded on

 

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
No Downloads

Views

Total Views
3,890
On Slideshare
0
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
54
Comments
0
Likes
2

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. 1 Recreated by Heri Sudiana & Published on http://www.matematika-pariwisata.moodlehub.com/ B. MENENTUKAN NILAI OPTIMUM DARI SISTEM PERTIDAKSAMAAN LINIER Nilai Optimum Fungsi Sasaran dari Daerah Sistem Pertidaksamaan Linier Hal terpenting dalam masalah program linier adalah mengubah persoalan verbal ke dalam bentuk model matematika (persamaan atau pertidaksamaan) yang merupakan penyajian dari bahasa sehari-hari ke dalam bahasa matematika yang lebih sederhana dan mudah dimengerti. Pada pembahasan dalam buku ini hanya menyajikan model matematika sederhana yang hanya melibatkan dua variabel dan penentuan nilai optimum ditempuh dengan menggunakan uji titik pojok. Langkah-langkah yang ditempuh untuk menentukan nilai optimum adalah sebagai berikut : a) Ubahlah persoalan verbal ke dalam model matematika (dalam bentuk sistem pertidaksamaan linier); b) Tentukan Himpunan Penyelesaian; c) Tentukan semua titik pojok pada daerah himpunan penyelesaian tersebut; d) Hitung nilai dari fungsi objektif untuk setiap titik pojok dalam daerah himpunan penyelesaian; e) Dari hasil pada langkah di atas, nilai maksimum atau minimum dapat ditetapkan. Contoh Soal 1 Tentukan nilai maksimum dan minimum dari yxZ 35 += , dengan syarat : 0 ;0 ;6 ;82 ≥ ≥ ≤+ ≤+ y x yx yx Jawab : Dengan cara seperti pada bagian sebelumnya (bagian A. Grafik Himpunan Penyelesaian Sistem Pertidaksamaan Linier), sistem pertidaksamaan tersebut mempunyai himpunan penyelesaian seperti pada grafik di bawah ini (Tanpa arsiran).
  • 2. 2 Recreated by Heri Sudiana & Published on http://www.matematika-pariwisata.moodlehub.com/ Himpunan penyelesaian sistem pertidaksamaan berupa segi empat dengan titik pojok O, A, B, dan C). Titik B yaitu titik potong antara 2 buah garis, yang dapat dicari dengan cara eliminasi/substitusi antara garis 6=+ yx dan 82 =+ yx , diperoleh nilai x = 4 dan y = 2, sehingga titik B(4, 2). Kemudian diuji titik-titik pojoknya yang ditunjukkan pada tabel berikut ini. Titik Pojok x y yx 35 + O(0, 0) 0 0 0 A(6, 0) 6 0 30 B(4, 2) 4 2 26 C(0, 4) 0 12 12 Dari tabel di atas, nilai maksimum adalah 30, terjadi untuk x = 6 dan y = 0. Sedangkan nilai minimum sama dengan 0 untuk x = 0 dan y = 0. Contoh Soal 2 Tentukan nilai maksimum dan minimum yxZ 32 += dari daerah yang ditunjukkan pada grafik di bawah ini. Y 0 8 4 6 6 HP X 6=+ yx 82 =+ yx● C ● ● B(4, 2) A 2 5 3 Y X0 (3, 5) (7, 3)HP
  • 3. 3 Recreated by Heri Sudiana & Published on http://www.matematika-pariwisata.moodlehub.com/ Jawab : Dengan menggunakan uji titik pojok, nilai maksimum dan minimum dapat dicari seperti ditunjukkan pada table di bawah ini : Titik Pojok x y yx 32 + (2, 0) 2 0 4 (5, 0) 5 0 10 (7, 3) 7 3 23 (3, 5) 3 5 21 (0, 3) 0 3 9 Dari tabel terlihat bahwa nilai maksimum adalah 23, yang terjadi pada titik (7, 3) dan nilai minimum adalah 4, yang terjadi pada titik (2, 0). Contoh Soal 3 Sebuah pesawat terbang mempunyai kapasitas tempat duduk tidak lebih dari 48 orang. Setiap penumpang kelas utama dapat membawa bagasi seberat 60 kg dan kelas ekonomi 20 kg, sedangkan pesawat tersebut mempunyai kapasitas bagasi tidak lebih dari 1.440 kg. apabila harga tiket untuk kelas utama dan ekonomi masing-masing adalah Rp. 1.000.000,- dan Rp. 500.000,- per orang, tentukan banyaknya penumpang setiap kelas agar penjualan tiket maksimum. Jawab : Model matematika disusun dengan memisalkan banyak penumpang kelas utama = x orang dan banyak penumpang kelas ekonomi = y orang. Variabel Kelas utama (x) Kelas ekonomi (y) Persediaan Penumpang x y 48 Bagasi 60 20 1.440 Harga tiket 1.000.000 500.000
  • 4. 4 Recreated by Heri Sudiana & Published on http://www.matematika-pariwisata.moodlehub.com/ Maksimalkan yxZ 000.500000.000.1 += . Syarat daya tampung : 48≤+ yx Syarat kapasitas : 14402060 ≤+ yx 0≥x 0≥y Dari model matematika di atas dapat dibuat grafik himpunan penyelesaian pertidaksamaan linier seperti terlihat pada gambar di bawah ini. Dari model matematika di atas dan grafik yang dihasilkan diperoleh titik pojok daerah Himpunan Penyelesaian yaitu titik O, A,B, dan C dengan titik B adalah titik potong antara garis 48=+ yx dan 482060 =+ yx . Titik potong B adapat dicari dengan cara subsitusi/eliminasi, sehingga diperoleh titik potong B(12, 36). Uji titik pojok O, A, B, dan C seperti terlihat pada tabel dibawah ini. Titik Pojok x y y000.500000.000.1 + O(0, 0) 0 0 0 A(24, 0) 24 0 24.000.000 B(12, 36) 12 36 30.000.000 C(0, 48) 0 48 24.000.000 Nilai maksimum Z adalah Rp. 30.000.000,- dipenuhi oleh x = 12 dan y = 36, atau dengan kata lain penjualan tiket akan maksimum jika banyaknya penumpang kelas utama sebanyak 12 orang dan kelas ekonomi sebanyak 36 orang. 0 24 48 X 72 48 Y HP 14402060 =+ yx 48=+ yx C B(12, 36) A ● ● ●