1.3 errores

354 views

Published on

0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
406
On SlideShare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
22
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

1.3 errores

  1. 1. MÉTODOS NUMÉRICOSMÉTODOS NUMÉRICOS 1.31.3 ErroresErrores Gustavo RochaGustavo Rocha 2005-22005-2
  2. 2. 1.3 Errores1.3 Errores Los métodos numéricos ofrecenLos métodos numéricos ofrecen soluciones aproximadas muy cercanas asoluciones aproximadas muy cercanas a las soluciones exactas; la discrepancialas soluciones exactas; la discrepancia entre una solución verdadera y unaentre una solución verdadera y una aproximada constituye un error, por lo queaproximada constituye un error, por lo que es importante saber qué se entiende pores importante saber qué se entiende por aproximar y aprender a cuantificar losaproximar y aprender a cuantificar los errores, para minimizarlos.errores, para minimizarlos.
  3. 3. 1.3 Errores1.3 Errores
  4. 4. 1.3.11.3.1 Error absolutoError absoluto Los errores numéricos se generan con el uso de aproximacionesLos errores numéricos se generan con el uso de aproximaciones para representar las operaciones y cantidades matemáticas.para representar las operaciones y cantidades matemáticas. La relación entre un resultado exacto o verdadero X y el valorLa relación entre un resultado exacto o verdadero X y el valor aproximado X* está dado por:aproximado X* está dado por: X = X* + errorX = X* + error (1.1)(1.1) El que un error tenga signo positivo o negativo, generalmente noEl que un error tenga signo positivo o negativo, generalmente no tiene importancia, de manera que el error absoluto se define comotiene importancia, de manera que el error absoluto se define como el valor absoluto de la diferencia entre el valor verdadero y el valorel valor absoluto de la diferencia entre el valor verdadero y el valor aproximado:aproximado: E = |X - X*|E = |X - X*| (1.2)(1.2) El error absoluto se expresa en las mismas unidades que X y noEl error absoluto se expresa en las mismas unidades que X y no toma en cuenta el orden de magnitud de la cantidad que se estátoma en cuenta el orden de magnitud de la cantidad que se está midiendo.midiendo.
  5. 5. 1.3.21.3.2 Error relativo.Error relativo. El error relativo normaliza el error absoluto respecto al valorEl error relativo normaliza el error absoluto respecto al valor verdadero de la cantidad medida:verdadero de la cantidad medida: ee = |E/X| = |(X - X*)/X|= |E/X| = |(X - X*)/X| (1.3)(1.3) El error relativo es adimensional y puede quedar expresado así, enEl error relativo es adimensional y puede quedar expresado así, en forma fraccional, o se puede multiplicar por 100 para expresarlo enforma fraccional, o se puede multiplicar por 100 para expresarlo en términos porcentuales:términos porcentuales: ee (%) = |E/X| x 100(%) = |E/X| x 100 (1.4)(1.4) Las ecuaciones (1.1), (1.2), (1.3) y (1.4) suponen que se conoce elLas ecuaciones (1.1), (1.2), (1.3) y (1.4) suponen que se conoce el valor verdadero de X, lo que hace que los errores absoluto yvalor verdadero de X, lo que hace que los errores absoluto y relativo: E yrelativo: E y ee sean también verdaderos. Pero normalmente X nosean también verdaderos. Pero normalmente X no se conoce; no tendría sentido considerar una aproximación, si sese conoce; no tendría sentido considerar una aproximación, si se conociese el valor verdadero.conociese el valor verdadero.
  6. 6. 1.3.21.3.2 Error relativoError relativo La mejor estimación posible del verdadero valor de X es suLa mejor estimación posible del verdadero valor de X es su aproximación X* y se define entonces una estimación del erroraproximación X* y se define entonces una estimación del error relativo como:relativo como: ee* = |E/X*|* = |E/X*| (1.5)(1.5) Pero el problema está en cómo estimar E, en ausencia dePero el problema está en cómo estimar E, en ausencia de conocimiento del verdadero valor de X.conocimiento del verdadero valor de X. Algunos métodos numéricos usan un esquema iterativo en los queAlgunos métodos numéricos usan un esquema iterativo en los que se hace una aproximación con base en la aproximación previa yse hace una aproximación con base en la aproximación previa y esto se hace varias veces, para obtener cada vez mejoresesto se hace varias veces, para obtener cada vez mejores aproximaciones:aproximaciones: ee* =* = || (valor actual - valor anterior)/valor actual(valor actual - valor anterior)/valor actual || (1.6)(1.6) Los cálculos se repiten hasta que:Los cálculos se repiten hasta que: ee* <* < ee00, donde, donde ee00 es un valores un valor prefijado previamente.prefijado previamente. Los errores numéricos se clasifican, por su origen, en tres tipos:Los errores numéricos se clasifican, por su origen, en tres tipos: errores inherentes, errores de redondeo y errores por truncamiento,errores inherentes, errores de redondeo y errores por truncamiento, cada uno de los cuales merece un tratamiento por separado.cada uno de los cuales merece un tratamiento por separado.
  7. 7. 1.3.3 Errores inherentes1.3.3 Errores inherentes Los errores inherentes se producen por la propia variabilidad deLos errores inherentes se producen por la propia variabilidad de los fenómenos; al ser caracterizados a través de cantidadeslos fenómenos; al ser caracterizados a través de cantidades físicas, las mediciones conllevan incertidumbre, pues losfísicas, las mediciones conllevan incertidumbre, pues los instrumentos de medición ofrecen sólo una aproximación numéricainstrumentos de medición ofrecen sólo una aproximación numérica del valor verdadero de la magnitud medida, pues se calibran paradel valor verdadero de la magnitud medida, pues se calibran para considerar solamente un determinado número de cifrasconsiderar solamente un determinado número de cifras significativas. Todas las magnitudes que se manejan en ingenieríasignificativas. Todas las magnitudes que se manejan en ingeniería son susceptibles a este tipo de errores.son susceptibles a este tipo de errores. Por ejemplo, cuando se dice que el tirante de agua de una presaPor ejemplo, cuando se dice que el tirante de agua de una presa es de 123 m, habiendo hecho la medición mediante un dispositivoes de 123 m, habiendo hecho la medición mediante un dispositivo que ofrece una precisión de tres cifras significativas, el tirante deque ofrece una precisión de tres cifras significativas, el tirante de agua realmente puede fluctuar entre 122.5 y 123.5 m.agua realmente puede fluctuar entre 122.5 y 123.5 m. X [122.5, 123.5)X [122.5, 123.5) X* = 123X* = 123
  8. 8. 1.3.3 Errores inherentes1.3.3 Errores inherentes
  9. 9. 1.3.3 Errores inherentes1.3.3 Errores inherentes El error inherente absoluto máximo que se puede llegarEl error inherente absoluto máximo que se puede llegar a cometer cumple con la desigualdad:a cometer cumple con la desigualdad: EEmaxmax ≤≤0.5 m;0.5 m; y el correspondiente error inherente relativo máximoy el correspondiente error inherente relativo máximo cumple con la desigualdad:cumple con la desigualdad: eemaxmax ≤≤ 0.5/122.5 = 0.004080.5/122.5 = 0.00408 El error inherente absoluto medio que se puedeEl error inherente absoluto medio que se puede cometer cumple con la desigualdad:cometer cumple con la desigualdad: EEmedmed ≤≤ 0.25 m;0.25 m; y el correspondiente error inherente relativo medioy el correspondiente error inherente relativo medio cumple con la desigualdad:cumple con la desigualdad: eemedmed ≤≤ 0.00204.0.00204.
  10. 10. 1.3.3.1 Yerros humanos1.3.3.1 Yerros humanos Algunos autores mencionan dentro de la clasificación deAlgunos autores mencionan dentro de la clasificación de errores inherentes, los yerros humanos, que se cometenerrores inherentes, los yerros humanos, que se cometen al hacer la lectura de una medida, al transmitirla o alal hacer la lectura de una medida, al transmitirla o al transcribirla; pero, en virtud de que estos errores detranscribirla; pero, en virtud de que estos errores de lectura, transmisión o transcripción pueden constituirselectura, transmisión o transcripción pueden constituirse en pifias garrafales que quedan fuera de todo control, noen pifias garrafales que quedan fuera de todo control, no es posible estimarlos en forma sistematizada. Pores posible estimarlos en forma sistematizada. Por ejemplo, si al transcribir en un documento la densidadejemplo, si al transcribir en un documento la densidad de un producto, se anota 1.381 en vez de 1.831, que esde un producto, se anota 1.381 en vez de 1.831, que es la medida leída, la pifia es imposible de manejar yla medida leída, la pifia es imposible de manejar y predecir.predecir.
  11. 11. 1.3.3.1 Yerros humanos1.3.3.1 Yerros humanos LecturaLectura TransmisiónTransmisión TranscripciónTranscripción ProgramaciónProgramación
  12. 12. 1.3.4 Errores de redondeo1.3.4 Errores de redondeo Los errores de redondeo se producen al realizar operaciones aritméticas en las que el resultadoLos errores de redondeo se producen al realizar operaciones aritméticas en las que el resultado produce una mantisa cuyo número de dígitos difiere significativamente del número de dígitos deproduce una mantisa cuyo número de dígitos difiere significativamente del número de dígitos de la mantisa de alguno de los valores numéricos involucrados en la operación. Al manejar unla mantisa de alguno de los valores numéricos involucrados en la operación. Al manejar un determinado número de cifras significativas en los cálculos, el resultado tiene que serdeterminado número de cifras significativas en los cálculos, el resultado tiene que ser redondeado de alguna manera, sobrestimando o subestimando el valor resultante verdadero.redondeado de alguna manera, sobrestimando o subestimando el valor resultante verdadero. Sea X el resultado de una operación aritmética, el cual puede ser expresado mediante notaciónSea X el resultado de una operación aritmética, el cual puede ser expresado mediante notación matemática, en forma normalizada: F x 10matemática, en forma normalizada: F x 10nn , donde F está formada por m cifras obtenidas en el, donde F está formada por m cifras obtenidas en el resultado, de las cuales, n son enteras. Este valor se puede descomponer en dos sumandos,resultado, de las cuales, n son enteras. Este valor se puede descomponer en dos sumandos, igualmente normalizados: el primero formado por t cifras significativas, las t primeras cifras deligualmente normalizados: el primero formado por t cifras significativas, las t primeras cifras del resultado después del punto decimal: f x 10resultado después del punto decimal: f x 10nn , y el segundo formado por las (m-t) cifras no, y el segundo formado por las (m-t) cifras no significativas del resultado, g x 10significativas del resultado, g x 10n-tn-t :: X = F x 10X = F x 10nn = f x 10= f x 10nn + g x 10+ g x 10n-tn-t En virtud de que F, f y g son números normalizados, su valor absoluto puede tomar algún valorEn virtud de que F, f y g son números normalizados, su valor absoluto puede tomar algún valor dentro del intervalo semiabierto [0.1, 1). F está formado por m dígitos, f está formada por tdentro del intervalo semiabierto [0.1, 1). F está formado por m dígitos, f está formada por t dígitos y g está formada por (m-t) dígitos.dígitos y g está formada por (m-t) dígitos. 0.10.1 ≤≤ |F| < 1 ;|F| < 1 ; 0.10.1 ≤≤ |f| < 1 ;|f| < 1 ; 00 ≤≤ |g| < 1|g| < 1 [0.1, 0.999...99][0.1, 0.999...99] [0.1, 0.999...99][0.1, 0.999...99] [0, 0.999...][0, 0.999...] m dígitosm dígitos t dígitost dígitos (m-t) dígitos(m-t) dígitos
  13. 13. 1.3.4 Errores de redondeo1.3.4 Errores de redondeo TruncadoTruncado 1.6661.666 SimétricoSimétrico 1.6671.667
  14. 14. 1.3.4.1 Redondeo truncado1.3.4.1 Redondeo truncado Al considerar únicamente t cifras significativas, se están despreciando (m-t) cifras delAl considerar únicamente t cifras significativas, se están despreciando (m-t) cifras del resultado, es decir, se está redondeando el resultado. Ahora bien, hay dos maneras deresultado, es decir, se está redondeando el resultado. Ahora bien, hay dos maneras de hacer ese redondeo: la primera consiste en tomar como aproximación numérica X* dehacer ese redondeo: la primera consiste en tomar como aproximación numérica X* de la operación realizada el valor f x 10la operación realizada el valor f x 10nn , haciendo caso omiso del valor de g x 10, haciendo caso omiso del valor de g x 10n-tn-t ; la; la segunda consiste en tomar como aproximación numérica X* el valor f x 10segunda consiste en tomar como aproximación numérica X* el valor f x 10nn , pero, pero ajustado conforme al valor que tenga el primer dígito de g x 10ajustado conforme al valor que tenga el primer dígito de g x 10n-tn-t .. Redondeo truncado:Redondeo truncado: X* = f x 10X* = f x 10nn (1.7)(1.7) El error absoluto que se comete en cada caso particular es:El error absoluto que se comete en cada caso particular es: E = |g| x 10E = |g| x 10n-tn-t El error absoluto máximo que se puede llegar a cometer, en cualquier caso, es:El error absoluto máximo que se puede llegar a cometer, en cualquier caso, es: EEmaxmax < 1 x 10< 1 x 10n-tn-t Y el error absoluto esperado que se puede cometer, considerando una distribución deY el error absoluto esperado que se puede cometer, considerando una distribución de probabilidad uniforme para los errores, es:probabilidad uniforme para los errores, es: EEmedmed < 0.5 x 10< 0.5 x 10n-tn-t El error relativo que se comete en cada caso particular es:El error relativo que se comete en cada caso particular es: e = |g/F| x 10e = |g/F| x 101-t1-t El error relativo máximo que se puede llegar a cometer, en todo caso, es:El error relativo máximo que se puede llegar a cometer, en todo caso, es: eemaxmax < 1 x 10< 1 x 101-t1-t Y el error relativo esperado o promedio que se puede cometer es:Y el error relativo esperado o promedio que se puede cometer es: eemedmed < 0.5 x 10< 0.5 x 101-t1-t
  15. 15. 1.3.4.1 Redondeo truncado1.3.4.1 Redondeo truncado Puesto que X no siempre se puede conocer con exactitud, F tampoco, por lo que es imposiblePuesto que X no siempre se puede conocer con exactitud, F tampoco, por lo que es imposible calcular los errores verdaderos, se recurre a sus estimaciones:calcular los errores verdaderos, se recurre a sus estimaciones: El error relativo estimado que se comete en cada caso particular es:El error relativo estimado que se comete en cada caso particular es: e* = |g/f| x 10e* = |g/f| x 101-t1-t El error relativo máximo estimado que se puede llegar a cometer es:El error relativo máximo estimado que se puede llegar a cometer es: e*e*maxmax < 1 x 10< 1 x 101-t1-t Y el error relativo esperado estimado que se puede cometer es:Y el error relativo esperado estimado que se puede cometer es: e*e*medmed < 0.5 x 10< 0.5 x 101-t1-t Ejemplo: Efectuar la suma: 162.4 + 1.769, considerando 4 cifras significativas con redondeoEjemplo: Efectuar la suma: 162.4 + 1.769, considerando 4 cifras significativas con redondeo truncado.truncado. 162.4162.4 == 0.1624 x 100.1624 x 1033 == 0.1624 x 100.1624 x 1033 + 1.769+ 1.769 == 0.1769 x 100.1769 x 1011 == 0.001769 x 100.001769 x 1033 ______________________________ ______________________________________ 164.169164.169 0.164169 x 100.164169 x 1033 X = 0.164169 x 10X = 0.164169 x 1033 = 0.1641 x 10= 0.1641 x 1033 + 0.000069 x 10+ 0.000069 x 1033 = 0.1641 x 10= 0.1641 x 1033 + 0.6900 x 10+ 0.6900 x 10-1-1 ;; n = 3 ; t = 4n = 3 ; t = 4 X* = 0.1641 x 10X* = 0.1641 x 1033 E = |X - X*| = |0.164169 x 10E = |X - X*| = |0.164169 x 1033 - 0.1641 x 10- 0.1641 x 1033 | =| = E = |0.000069 x 10E = |0.000069 x 1033 | = |0.69 x 10| = |0.69 x 10-1-1 | = 0.69 x 10| = 0.69 x 10-1-1 < 1 x 10< 1 x 10-1-1 ee = |E/X| = |(0.69 x 10= |E/X| = |(0.69 x 10-1-1 )/(0.164169 x 10)/(0.164169 x 1033 )| = 0.4203 x 10)| = 0.4203 x 10-3-3 < 1 x 10< 1 x 10-3-3 ee* = |E/X*| = |(0.69 x 10* = |E/X*| = |(0.69 x 10-1-1 )/(0.1641 x 10)/(0.1641 x 1033 )| = 0.4205 x 10)| = 0.4205 x 10-3-3 < 1 x 10< 1 x 10-3-3
  16. 16. 1.3.4.2 Redondeo simétrico1.3.4.2 Redondeo simétrico Redondeo simétrico:Redondeo simétrico: f x 10f x 10nn ; si |g|< 0.5; si |g|< 0.5 X* =X* = (1.8)(1.8) f x 10f x 10nn + 1 x 10+ 1 x 10n-tn-t ; si |g|; si |g| ≥≥ 0.50.5 El error absoluto que se comete en cada caso particular es:El error absoluto que se comete en cada caso particular es: |g| x 10|g| x 10n-tn-t ; si |g|< 0.5; si |g|< 0.5 E =E = |1 - g| x 10|1 - g| x 10n-tn-t ; si |g|; si |g| ≥≥ 0.50.5 El error absoluto máximo que se puede llegar a cometer, en cualquier caso,El error absoluto máximo que se puede llegar a cometer, en cualquier caso, es:es: EEmaxmax < 0.5 x 10< 0.5 x 10n-tn-t Y el error absoluto esperado que se puede cometer, considerando unaY el error absoluto esperado que se puede cometer, considerando una distribución de probabilidad uniforme para los errores, es:distribución de probabilidad uniforme para los errores, es: EEmedmed < 0.25 x 10< 0.25 x 10n-tn-t El error relativo que se comete en cada caso particular es:El error relativo que se comete en cada caso particular es: |g/F| x 10|g/F| x 10-t-t ; si |g| < 0.5; si |g| < 0.5 ee == |(1-g)/F| x 10|(1-g)/F| x 10-t-t ; si |g|; si |g| ≥≥ 0.50.5
  17. 17. 1.3.4.2 Redondeo simétrico1.3.4.2 Redondeo simétrico El error relativo máximo que se puede llegar a cometer, en todo caso, es:El error relativo máximo que se puede llegar a cometer, en todo caso, es: eemaxmax < 0.5 x 10< 0.5 x 101-t1-t Y el error relativo esperado o promedio que se puede cometer es:Y el error relativo esperado o promedio que se puede cometer es: eemedmed < 0.25 x 10< 0.25 x 101-t1-t El error relativo estimado que se comete en cada caso particular es:El error relativo estimado que se comete en cada caso particular es: |g/f| x 10|g/f| x 10-t-t ; si |g| < 0.5; si |g| < 0.5 ee* =* = |(1-g)/f| x 10|(1-g)/f| x 10-t-t ; si |g|; si |g| ≥≥ 0.50.5 El error relativo máximo estimado que se puede llegar a cometer es:El error relativo máximo estimado que se puede llegar a cometer es: e*e*maxmax < 0.5 x 10< 0.5 x 101-t1-t Y el error relativo esperado estimado que se puede cometer es:Y el error relativo esperado estimado que se puede cometer es: e*e*medmed < 0.25 x 10< 0.25 x 101-t1-t
  18. 18. 1.3.4.2 Redondeo simétrico1.3.4.2 Redondeo simétrico Ejemplo: Efectuar la suma: 162.4 + 1.769, considerando 4 cifras significativas con redondeoEjemplo: Efectuar la suma: 162.4 + 1.769, considerando 4 cifras significativas con redondeo simétrico.simétrico. 162.4162.4 == 0.1624 x 100.1624 x 1033 == 0.1624 x 100.1624 x 1033 + 1.769+ 1.769 == 0.1769 x 100.1769 x 1011 == 0.001769 x 100.001769 x 1033 ______________________________ ______________________________________ 164.169164.169 0.164169 x 100.164169 x 1033 X = 0.164169 x 10X = 0.164169 x 1033 = 0.1641 x 10= 0.1641 x 1033 + 0.000069 x 10+ 0.000069 x 1033 = 0.1641 x 10= 0.1641 x 1033 + 0.6900 x 10+ 0.6900 x 10-1-1 ;; n = 3 ; t = 4n = 3 ; t = 4 X* = 0.1642 x 10X* = 0.1642 x 1033 E = |X - X*| = |0.164169 x 10E = |X - X*| = |0.164169 x 1033 - 0.1642 x 10- 0.1642 x 1033 | =| = = |0.000031 x 10= |0.000031 x 1033 | = |0.31 x 10| = |0.31 x 10-1-1 | = 0.31 x 10| = 0.31 x 10-1-1 < 0.5 x 10< 0.5 x 10-1-1 ee = |E/X| = |(0.31 x 10= |E/X| = |(0.31 x 10-1-1 )/(0.164169 x 10)/(0.164169 x 1033 )| = 0.1888 x 10)| = 0.1888 x 10-3-3 < 0.5 x 10< 0.5 x 10-3-3 ee* = |E/X*| = |(0.31 x 10* = |E/X*| = |(0.31 x 10-1-1 )/(0.1642 x 10)/(0.1642 x 1033 )| = 0.1888 x 10)| = 0.1888 x 10-3-3 < 0.5 x 10< 0.5 x 10-3-3
  19. 19. 1.3.4.2 Redondeo simétrico1.3.4.2 Redondeo simétrico Ejemplo: Efectuar la siguiente suma:Ejemplo: Efectuar la siguiente suma: 0.9999 x 100.9999 x 1000 0.8888 x 100.8888 x 1011 0.7777 x 100.7777 x 1022 0.6666 x 100.6666 x 1033 0.5555 x 100.5555 x 1044 0.4444 x 100.4444 x 1055 0.3333 x 100.3333 x 1066 0.2222 x 100.2222 x 1077 0.1111 x 100.1111 x 1088 a)a) primero considerando todas las cifras incluidas en los sumandos.primero considerando todas las cifras incluidas en los sumandos. b)b) luego efectuando la suma de arriba hacia abajo, con redondeo simétrico y t = 4,luego efectuando la suma de arriba hacia abajo, con redondeo simétrico y t = 4, calcule el error relativo porcentual correspondiente.calcule el error relativo porcentual correspondiente. c)c) luego efectuando la suma de abajo hacia arriba, con redondeo simétrico y t = 4,luego efectuando la suma de abajo hacia arriba, con redondeo simétrico y t = 4, calcule el error relativo porcentual correspondiente.calcule el error relativo porcentual correspondiente. d)d) compare los errores cometidos en los incisos b y c, y saque conclusiones.compare los errores cometidos en los incisos b y c, y saque conclusiones.
  20. 20. 1.3.4.2 Redondeo simétrico1.3.4.2 Redondeo simétrico a)a) la suma exacta es:la suma exacta es: X = 13'716,049.2579X = 13'716,049.2579 b)b) la suma descendente da:la suma descendente da: X* = 13'720,000 = 0.1372 x 10X* = 13'720,000 = 0.1372 x 1088 E = 3960.7421E = 3960.7421 ;; e = 0.2888 x 10e = 0.2888 x 10-3-3 c)c) la suma ascendente da:la suma ascendente da: X* = 13'710,000 = 0.1371 x 10X* = 13'710,000 = 0.1371 x 1088 E = 6049.2579E = 6049.2579 ;; e = 0.4410 x 10e = 0.4410 x 10-3-3 d)d) Es mayor el error haciendo la suma de abajo hacia arriba que haciéndolaEs mayor el error haciendo la suma de abajo hacia arriba que haciéndola de arriba hacia abajo. Aunque teóricamente sabemos que la suma esde arriba hacia abajo. Aunque teóricamente sabemos que la suma es conmutativa, resulta que al redondear simétricamente a 4 cifrasconmutativa, resulta que al redondear simétricamente a 4 cifras significativas, el orden en que se realiza la suma afecta el resultado.significativas, el orden en que se realiza la suma afecta el resultado. En ambos casos se cumple que:En ambos casos se cumple que:e < ee < emaxmax = 0.5 x 10= 0.5 x 101-t1-t = 0.5 x 10= 0.5 x 10-3-3 En este caso, e > eEn este caso, e > emedmed = 0.25 x 10= 0.25 x 10-3-3 , lo que se explica porque el ejemplo está, lo que se explica porque el ejemplo está amañado para que dé errores significativos.amañado para que dé errores significativos.
  21. 21. 1.3.5 Errores por truncamiento1.3.5 Errores por truncamiento Los errores por truncamiento ocurren cuando un número, cuya parte fraccionaria estáLos errores por truncamiento ocurren cuando un número, cuya parte fraccionaria está constituida por un número infinito de dígitos, requiere ser representadoconstituida por un número infinito de dígitos, requiere ser representado numéricamente en forma aproximada, utilizando un determinado número de cifrasnuméricamente en forma aproximada, utilizando un determinado número de cifras significativas.significativas. Por ejemplo, 3.1416 es una buena aproximación del númeroPor ejemplo, 3.1416 es una buena aproximación del número ππ, pero el valor exacto, pero el valor exacto no puede ser expresado numéricamente por completo, pues consta de un númerono puede ser expresado numéricamente por completo, pues consta de un número infinito de dígitos: 3.141592653589793...; lo mismo ocurre con el 2.7183 para elinfinito de dígitos: 3.141592653589793...; lo mismo ocurre con el 2.7183 para el númeronúmero ee, el 1.4142 para, el 1.4142 para √√2, y el 0.33333 para 1/3.2, y el 0.33333 para 1/3. Sin embargo, todos los números, ya sean enteros, racionales o irracionales, puedenSin embargo, todos los números, ya sean enteros, racionales o irracionales, pueden ser representados a través de formulaciones matemáticas exactas, utilizando seriesser representados a través de formulaciones matemáticas exactas, utilizando series infinitas; obviamente, las representaciones numéricas acotadas a un determinadoinfinitas; obviamente, las representaciones numéricas acotadas a un determinado número de cifras significativas, son aproximaciones numéricas que llevan implícitosnúmero de cifras significativas, son aproximaciones numéricas que llevan implícitos errores por truncamiento.errores por truncamiento. Por ejemplo, los números 1, 1/3 yPor ejemplo, los números 1, 1/3 y ee pueden expresarse matemáticamente, depueden expresarse matemáticamente, de manera exacta, a través de las siguientes series infinitas:manera exacta, a través de las siguientes series infinitas: 1 = 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + ...1 = 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + ... 1/3 = 3/10 + 3/100 + 3/1000 + 3/10000 + 3/100000 + ...1/3 = 3/10 + 3/100 + 3/1000 + 3/10000 + 3/100000 + ... ee = 1/0! + 1/1! + 1/2! + 1/3! + 1/4! + 1/5! + ...= 1/0! + 1/1! + 1/2! + 1/3! + 1/4! + 1/5! + ...
  22. 22. 1.3.5 Errores por truncamiento.1.3.5 Errores por truncamiento. En este último caso, por ejemplo, la aproximación se puede hacer truncando la serie enEn este último caso, por ejemplo, la aproximación se puede hacer truncando la serie en cualquier punto, lo que equivale a incluir 1, 2, 3, ..., ó n términos de la serie. Si tomásemoscualquier punto, lo que equivale a incluir 1, 2, 3, ..., ó n términos de la serie. Si tomásemos como valor "exacto" decomo valor "exacto" de e,e, 2.7182818, tendríamos:2.7182818, tendríamos: TérminosTérminos AproximaciónAproximación Error absolutoError absoluto Error relativo (%)Error relativo (%) 11 1.00000001.0000000 1.71828181.7182818 63.2163.21 22 2.00000002.0000000 0.71828180.7182818 26.4226.42 33 2.50000002.5000000 0.21828180.2182818 8.038.03 44 2.66666672.6666667 0.05161510.0516151 1.901.90 55 2.70833332.7083333 0.00994850.0099485 0.370.37 66 2.71666672.7166667 0.00161520.0016152 0.060.06 77 2.71805562.7180556 0.00022630.0002263 0.010.01 88 2.71825402.7182540 0.00002790.0000279 ≅≅ 0.000.00 El manejo de series infinitas para aproximar valores específicos de funciones matemáticas esEl manejo de series infinitas para aproximar valores específicos de funciones matemáticas es fundamental para comprender a plenitud la mayor parte de los métodos numéricos incluidos enfundamental para comprender a plenitud la mayor parte de los métodos numéricos incluidos en este curso, así como para calcular los errores por truncamiento asociados a esaseste curso, así como para calcular los errores por truncamiento asociados a esas aproximaciones. Este tema será retomado al final del capítulo, donde se trata con detalle el usoaproximaciones. Este tema será retomado al final del capítulo, donde se trata con detalle el uso de la serie de Taylor.de la serie de Taylor.
  23. 23. 1.3.5 Errores por truncamiento1.3.5 Errores por truncamiento Serie de TaylorSerie de Taylor
  24. 24. 1.3.6 Propagación de errores.1.3.6 Propagación de errores. SeanSean X, YX, Y valores exactos; sean X, Y sus aproximaciones. Sean Evalores exactos; sean X, Y sus aproximaciones. Sean Exx y Ey Eyy los erroreslos errores absolutos inherentes o por truncamiento, asociados a esas aproximacionesabsolutos inherentes o por truncamiento, asociados a esas aproximaciones numéricas: sean enuméricas: sean exx y ey eyy los errores relativos correspondientes. Sea Elos errores relativos correspondientes. Sea Err el errorel error absoluto de redondeo que se puede cometer al realizar cualquier operaciónabsoluto de redondeo que se puede cometer al realizar cualquier operación aritmética; y earitmética; y err el error relativo de redondeo correspondiente.el error relativo de redondeo correspondiente. Suma:Suma: XX ++YY = X + E= X + Exx + Y + E+ Y + Eyy + E+ Err = (X +Y) + (E= (X +Y) + (Exx + E+ Eyy) + E) + Err EEx+yx+y = E= Exx + E+ Eyy + E+ Err eex+yx+y = (E= (Exx + E+ Eyy + E+ Err)/(X + Y))/(X + Y) = [X/(X + Y)](E= [X/(X + Y)](Exx/X) + [Y/(X + Y)](E/X) + [Y/(X + Y)](Eyy/Y) + e/Y) + err eex+yx+y = [X/(X + Y)]= [X/(X + Y)]eexx + [Y/(X + Y)]+ [Y/(X + Y)]eeyy + e+ err (1.9)(1.9) Resta:Resta: XX -- YY = (X + E= (X + Exx) - (Y + E) - (Y + Eyy) + E) + Err = X + E= X + Exx - Y - E- Y - Eyy + E+ Err = (X - Y) + (E= (X - Y) + (Exx - E- Eyy) + E) + Err EEx-yx-y = E= Exx - E- Eyy + E+ Err eex-yx-y = (E= (Exx - E- Eyy + E+ Err)/(X - Y) =)/(X - Y) = = [X/(X - Y)](E= [X/(X - Y)](Exx/X) - [Y/(X - Y)](E/X) - [Y/(X - Y)](Eyy/Y) + e/Y) + err ==
  25. 25. 1.3.6 Propagación de errores.1.3.6 Propagación de errores. Producto:Producto: X·YX·Y = (X + E= (X + Exx)(Y + E)(Y + Eyy) + E) + Err = X·Y + XE= X·Y + XEyy + YE+ YExx + E+ ExxEEyy + E+ Err = X·Y + X E= X·Y + X Eyy + Y E+ Y Exx + E+ Err EExyxy = X E= X Eyy + Y E+ Y Exx + E+ Err eexyxy = (X E= (X Eyy + Y E+ Y Exx + E+ Err)/X Y = E)/X Y = Exx/X + E/X + Eyy/Y + e/Y + err eexyxy == eexx ++ eeyy + e+ err (1.11)(1.11) Cociente:Cociente: XX//YY = (X + E= (X + Exx)/(Y + E)/(Y + Eyy) + E) + Err = (X + E= (X + Exx)/[Y(1 + E)/[Y(1 + Eyy/Y)] + E/Y)] + Err = [(X + E= [(X + Exx)/Y] [1/(1 + E)/Y] [1/(1 + Eyy/Y)] +E/Y)] +Err = [(X + E= [(X + Exx)/Y] [1 - E)/Y] [1 - Eyy/Y + (E/Y + (Eyy/Y)2 - (E/Y)2 - (Eyy/Y)3 + ...] + E/Y)3 + ...] + Err = [(X+ E= [(X+ Exx)/Y] (1 - E)/Y] (1 - Eyy/Y) + E/Y) + Err = [(X + E= [(X + Exx)/Y] + [(X + E)/Y] + [(X + Exx)E)Eyy/Y2] + E/Y2] + Err = X/Y + E= X/Y + Exx/Y - XE/Y - XEyy/Y2 -/Y2 - ExEy/Y2ExEy/Y2 + Er+ Er = X/Y + Ex/Y - XEy/Y2 + Er= X/Y + Ex/Y - XEy/Y2 + Er EEx/yx/y = Ex/Y - XEy/Y2 + Er = (YEx - XEy)/Y2 + E= Ex/Y - XEy/Y2 + Er = (YEx - XEy)/Y2 + Err eex/yx/y = [(YE= [(YExx - XE- XEyy)/Y2 + E)/Y2 + Err]/(X/Y) = (YE]/(X/Y) = (YExx - XE- XEyy)/XY + e)/XY + err = E= Exx/X - E/X - Eyy/Y + e/Y + err ee == ee -- ee + e+ e (1.12)(1.12)
  26. 26. 1.3.6 Propagación de errores.1.3.6 Propagación de errores. Las ecuaciones (1.10), (1.11), (1.12) y (1.13) muestranLas ecuaciones (1.10), (1.11), (1.12) y (1.13) muestran como se propagan los errores al efectuar lascomo se propagan los errores al efectuar las operaciones aritméticas de suma, resta, producto yoperaciones aritméticas de suma, resta, producto y cociente, respectivamente. La propagación de loscociente, respectivamente. La propagación de los errores crece en la medida que se efectúan más y máserrores crece en la medida que se efectúan más y más operaciones, aunque eventualmente llegan a disminuiroperaciones, aunque eventualmente llegan a disminuir por efecto de compensación, cuando éstas sepor efecto de compensación, cuando éstas se combinan.combinan.
  27. 27. 1.3.6.1 Gráficas de procesos1.3.6.1 Gráficas de procesos Cada una de las operaciones vistas anteriormente puede ser representadaCada una de las operaciones vistas anteriormente puede ser representada a través de un gráfica de proceso, como se muestra a continuación:a través de un gráfica de proceso, como se muestra a continuación: a)a) Suma:Suma: eex+yx+y = [X/(X + Y)]= [X/(X + Y)]eexx + [Y/(X + Y)]+ [Y/(X + Y)]eeyy + e+ err + YX er ex ey X/(X + Y) Y/(X + Y)
  28. 28. 1.3.6.1 Gráficas de procesos1.3.6.1 Gráficas de procesos b)b) Resta:Resta: eex-yx-y = [X/(X - Y)]= [X/(X - Y)]eexx - [Y/(X - Y)]- [Y/(X - Y)]eeyy + e+ err - YX er ex ey X/(X - Y) -Y/(X - Y)
  29. 29. 1.3.6.1 Gráficas de procesos1.3.6.1 Gráficas de procesos c) Producto:c) Producto: eexyxy == eexx ++ eeyy + e+ err • YX er ex ey 1 1
  30. 30. 1.3.6.1 Gráficas de procesos1.3.6.1 Gráficas de procesos c) Cociente:c) Cociente: eex/yx/y == eexx -- eeyy + e+ err / YX er ex ey 1 -1
  31. 31. Propagación de erroresPropagación de errores Gráficas de procesoGráficas de proceso
  32. 32. 1.3.6.1 Gráficas de procesos1.3.6.1 Gráficas de procesos Se observa que los valores anotados a un lado de los segmentos de rectaSe observa que los valores anotados a un lado de los segmentos de recta que unen a las variables X y Y con los símbolos de suma, resta, producto yque unen a las variables X y Y con los símbolos de suma, resta, producto y cociente, son precisamente los coeficientes de los errores relativoscociente, son precisamente los coeficientes de los errores relativos eexx yy eeyy en las ecuaciones (1.9), (1.10), (1.11) y (1.12), respectivamente.en las ecuaciones (1.9), (1.10), (1.11) y (1.12), respectivamente. Ejemplo: Auxiliándose en una gráfica de proceso, calcule el error relativoEjemplo: Auxiliándose en una gráfica de proceso, calcule el error relativo que se comete al evaluar: U = (X + Y)·Z, donde se sabe que X y Y sonque se comete al evaluar: U = (X + Y)·Z, donde se sabe que X y Y son exactos y Z no lo es.exactos y Z no lo es. eexx,, eeyy = 0= 0 ;; eezz ≤≤ 0.5 x 100.5 x 101-t1-t redondeo por productoredondeo por producto eerr ≤≤ 0.5 x 100.5 x 101-t1-t redondeo por sumaredondeo por suma eerr ≤≤ 0.5 x 100.5 x 101-t1-t
  33. 33. U Z • + YX er er eZ 1 1 X/(X + Y) Y/(X + Y)
  34. 34. 1.3.6.1 Gráficas de procesos1.3.6.1 Gráficas de procesos eeuu == ee(x+y)z(x+y)z == eex+yx+y ++ eezz ++ eerr eex+yx+y = [X/(X+Y)]= [X/(X+Y)]eexx + [Y/(X+Y)]+ [Y/(X+Y)]eeyy ++ eerr eeuu == eezz ++ eerr ++ eerr eeuu ≤≤ 0.5 x 100.5 x 101-t1-t + 0.5 x 10+ 0.5 x 101-t1-t + 0.5 x 10+ 0.5 x 101-t1-t = 1.5 x 10= 1.5 x 101-t1-t Ejemplo: Auxiliándose en una gráfica de proceso, calcule el errorEjemplo: Auxiliándose en una gráfica de proceso, calcule el error relativo que se comete al evaluar:relativo que se comete al evaluar: X = A + B + C + DX = A + B + C + D a)a) considerando las sumas sucesiva de A, B, C y D.considerando las sumas sucesiva de A, B, C y D. b)b) sumando por un lado A y B, y por otro C y D, para luego sumar sussumando por un lado A y B, y por otro C y D, para luego sumar sus resultados:resultados: X = (A + B) + (C + D)X = (A + B) + (C + D) c) discuta los resultados obtenidos en los dos incisos anteriores.c) discuta los resultados obtenidos en los dos incisos anteriores.
  35. 35. X B C D + + + A eB eC eD er er er eA (A+B+C)/(A+B+C+D) (A+B)/(A+B+C) A/(A+B) B/(A+B) C/(A+B+C) D/(A+B+C+D) a)
  36. 36. 1.3.6.1 Gráficas de procesos1.3.6.1 Gráficas de procesos X A+B C D r A+B A B r C+D C D r X A B r C D r r X A B A+B C D e e e e A+B+C+D A+B+C+D A B e = e + e + e A+B A+B C D e = e + e + e C+D C+D A+B A B C D C D e e + e + e e + e + e e A+B+C+D A+B A+B A+B+C+D C+D C+D A B A e = e + e + A+B+C+D A+B+C+D + + = + + +    = + +        r C D r r +B C D C+D e e e e e A+B+C+D A+B+C+D A+B+C+D A+B+C+D + + + +
  37. 37. 1.3.6.1 Gráficas de procesos1.3.6.1 Gráficas de procesos Suponiendo que los datos presentan errores inherentes: Suponiendo que los datos son exactos: 1-t A B C D r X X X X Si e = e = e = e = e = e 0.5 x 10 A B A+B C D C+D e = e + e + e e e e e A+B+C+D A+B+C+D A+B+C+D A+B+C+D A+B+C+D A+B+C+D A+B+A+B+C+D+C+D+A+B+C+D e = e A+B+C+D 4A+4B+3C+2D e = e A+B+C+D 4A+4B+3C+2D e 0.5x10 A+B+C+D ≤ + + + + ≤ ( )1 t− ( ) 1-t A B C D r X X X 1 t X e = e = e = e = 0; e = e 0.5 x 10 A+B A+B+C e = e e e A+B+C+D A+B+C+D A+B+A+B+C+A+B+C+D e = e A+B+C+D 3A+3B+2C+D e = e A+B+C+D 3A+3B+2C+D e 0.5x10 A+B+C+D − ≤ + + ≤
  38. 38. b) X A DCB ++ +er er er eA eB eC eD (A+B)/(A+B+C+D) A/(A+B) (C+D/(A+B+C+D) B/(A+B) C/(C+D) D/(C+D)
  39. 39. 1.3.6.1 Gráficas de procesos1.3.6.1 Gráficas de procesos X A+B C D r A+B A B r C+D C D r X A B r C D r r X A B A+B C D e e e e A+B+C+D A+B+C+D A B e = e + e + e A+B A+B C D e = e + e + e C+D C+D A+B A B C D C D e e + e + e e + e + e e A+B+C+D A+B A+B A+B+C+D C+D C+D A B A e = e + e + A+B+C+D A+B+C+D + + = + + +    = + +        r C D r r +B C D C+D e e e e e A+B+C+D A+B+C+D A+B+C+D A+B+C+D + + + + ( ) 1-t A B C D r X X X 1 t 1 t 1 t X Si e = e = e = e = 0 ; e = e 0.5 x 10 A+B C+D e = e e e A+B+C+D A+B+C+D A+B+C+D+A+B+C+D e = e A+B+C+D 2A+2B+2C+2D e = e A+B+C+D 2A+2B+2C+2D e 0.5x10 2x0.5x10 1.0x10 A+B+C+D − − − ≤ + + ≤ = =
  40. 40. 1.3.6.1 Gráficas de procesos1.3.6.1 Gráficas de procesos c) Es mayor el error haciendo la suma en forma sucesiva que agrupando los sumandos. Aunque teóricamente sabemos que la suma es asociativa, se ve que la forma en que se realizan las operaciones afecta el resultado. También se observa como incide en el error total la presencia de errores inherentes en los datos; para el inciso a) en un 44.44 % más, y para el inciso b) en un 50% más. ( ) 1-t A B C D r X X X 1 t 1 t 1 t X Si e = e = e = e = 0 ; e = e 0.5 x 10 A+B C+D e = e e e A+B+C+D A+B+C+D A+B+C+D+A+B+C+D e = e A+B+C+D 2A+2B+2C+2D e = e A+B+C+D 2A+2B+2C+2D e 0.5x10 2x0.5x10 1.0x10 A+B+C+D − − − ≤ + + ≤ = =

×