• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Guia De Estudio Intervalos Alumnos
 

Guia De Estudio Intervalos Alumnos

on

  • 55,116 views

prueba

prueba

Statistics

Views

Total Views
55,116
Views on SlideShare
55,108
Embed Views
8

Actions

Likes
5
Downloads
399
Comments
1

2 Embeds 8

http://xmathema.webcindario.com 7
http://www.slideshare.net 1

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel

11 of 1 previous next

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Guia De Estudio Intervalos Alumnos Guia De Estudio Intervalos Alumnos Document Transcript

    • Practicante: Heczobeth Piña
    • Practicante: Heczobeth Piña INTRODUCCIÓN: Esta guía didáctica ha sido diseñada con la finalidad de afianzar los conocimientos en relación al conjunto de números reales y las distintas operaciones que se realizan dentro de dicho conjunto, así como también hacer énfasis en las diferentes definiciones que tienen que ver con intervalos reales: tipos, representación grafica y operaciones. OBJETIVO: Definir e identificar los diferentes tipos de intervalos, y resolver ejercicios con las operaciones básicas (Unión e intersección). A lo largo de esta guía descubrirás las siguientes interrogantes. GUÍA DIDÁCTICA: INTERVALOS REALES ¿QUÉ SE ENTIENDE POR INTERVALO? ¿CUÁL ES LA UTILIDAD DE LOS INTERVALOS EN LA VIDA DIARIA? ¿CUÁLES SON LOS SIMBOLOS QUE SE UTILIZAN PARA ESCRIBIR LOS INTERVALOS? ¿CUÁLES SON LAS OPERACIONES BÁSICAS CON INTERVALOS? ¿CÓMO GRAFICAR LOS DIFERENTES TIPOS DE INTERVALOS? ¿CUÁLES SON LOS TIPOS DE INTERVALOS?
    • Practicante: Heczobeth Piña INTERVALO Es el espacio o distancia que hay de un tiempo a otro o de un lugar a otro. La expresión { x є R/ a< x <b } se lee: el conjunto de todos los números reales tales que son mayores que a y menores que b . En la recta numérica siguiente, x es un número real cualquiera que está entre otros dos reales a y b. ____________(_________________________________________)___________ a x b Es evidente que a<x y x<b. Esta situación se puede expresar como: a<x<b. Como x es un número real cualquiera, la expresión a<x<b se satisface para los infinitos valores que puede tomar x de los que existen entre a y b. GUÍA DIDÁCTICA: INTERVALOS REALES La expresión { x є R/ a< x <b } representa el conjunto de todos los números reales que están entre otros dos reales dados. Este conjunto de números reales se denomina Intervalo
    • Practicante: Heczobeth Piña Por Ejemplo Si se quiere hallar todos los puntos sobre una recta real que están entre el punto A(-3) y el punto B(5), observa lo que se realiza En este caso el conjunto buscado está formado por todos los puntos que quedan a la derecha del punto A y a la izquierda del punto B, es decir, las coordenadas de esos puntos son mayores que -3 y son menores que 5, como se muestra en la siguiente figura: _________A_(_____________________________________________)_B______ -3 5 Luego, si X(x) es un punto que está entre A y B se escribe -3<x<5. A ese conjunto de puntos se le denomina intervalo y los números -3 y 5 se llaman sus extremos. GUÍA DIDÁCTICA: INTERVALOS REALES
    • Practicante: Heczobeth Piña GUÍA DIDÁCTICA: INTERVALOS REALES De acuerdo con lo anterior, es posible identificar y definir en forma analítica y en forma gráfica distintos conjuntos de números reales en la recta real. Dado a<b, y a, b є R, se definen los siguientes tipos de intervalos: Importante: En la figura anterior, los extremos se han marcados con paréntesis para indicar que no están incluidos, es decir, que no forman parte del conjunto. Si así fuera se colocarían corchetes
    • Practicante: Heczobeth Piña GUÍA DIDÁCTICA: INTERVALOS REALES Intervalo Cerrado Intervalo semiabierto por la derecha Intervalo semiabierto por la izquierda Es el conjunto de números reales comprendidos entre a y b , incluidos ambos. Se simboliza como: [a,b] Los corchetes indican que los extremos están en el conjunto. Se llama así al conjunto de números reales comprendidos entre ay b que incluye al extremo a , pero no incluye al extremo b. Se simboliza por: [a,b) Se denomina así al conjunto de números reales comprendidos entre a y b que excluye al extremo a, pero incluye al extremo b. Se simboliza por: (a,b] Intervalo Abierto Se denomina así al conjunto de números reales comprendidos entre a y b. Se simboliza por: (a,b) Los paréntesis indican que los extremos no están en el conjunto Tipos de Intervalos
    • Practicante: Heczobeth Piña Ejemplos: GUÍA DIDÁCTICA: INTERVALOS REALES Intervalo Abierto Intervalo Cerrado Intervalo semiabierto por la derecha Intervalo semiabierto por la izquierda
    • Practicante: Heczobeth Piña GUÍA DIDÁCTICA: INTERVALOS REALES El conjunto de todos los números reales mayores que un número real a, se considera un intervalo infinito de la forma (a, +∞). El símbolo +∞ significa que el conjunto se extiende indefinidamente a la derecha. Asimismo se pueden definir otros intervalos infinitos, como lo son: [a,+ ∞), (- ∞,a), (- ∞,a] y (- ∞,+ ∞), en los que - ∞ significa que el conjunto se extiende indefinidamente hacia la izquierda. Fíjate en el siguiente ejemplo: [-2,+ ∞). ___________[_____________________________ -2 + ∞ Ahora observa cómo se halla la intersección de los intervalos (-3,6] y [-5,4), o sea (-3,6] ∩ [-5,4). Para ello se trazan ambos intervalos y se identifica el que contiene la parte común. ____[___(________________________)________]___ -5 -3 0 4 6 Luego, la intersección o la parte común es el intervalo (-3,4). En otro caso, fíjate cómo se halla la unión de los intervalos (-2,7] y (-5,4), o sea, (-2,7] U (-5,4). Esto implica determinar el conjunto de los números reales que estén en al menos uno de esos intervalos. __(_______(____________________)__________]__ -5 -2 0 4 7 Al representar ambos intervalos se observa que la unión de los conjuntos es el intervalo (-5,7]. Se colocó corchete a la derecha porque también contiene al 7
    • Practicante: Heczobeth Piña GUÍA DIDÁCTICA: INTERVALOS REALES ara hacer en el cuaderno
      • Representa gráficamente cada uno de los siguientes intervalos:
      • [2, 5)
      • (-∞,3]
      • (2, +∞)
      • (-4, 5]
      • [-6,1]
      • [-3, 5)
      • Escribe en forma de intervalo el conjunto que corresponde a cada gráfico
      • a) ___[____________)___
      • 1 12
      • b) _____(_____________)___
      • -3 0
      • c) ________[__________________)_____
      • -1 + ∞
      • d) _______(________________]_____
      • 4 8
    • Practicante: Heczobeth Piña GUÍA DE DIDÁCTICA: INTERVALOS REALES Curiosidades Matemáticas Los Intervalos y el Calendario Los Intervalos se han utilizado prácticamente desde la existencia del hombre, quién mediante la observación de los fenómenos naturales, comenzó a registrar el tiempo a través de marcas en los árboles o en su cueva. Con el tiempo, se estableció el año de 360 días en 12 meses y 4 estaciones; pero las civilizaciones que usaban este calendario se percataron de que este cálculo no era exacto y tenían que agregar días para predecir el periodo de siembra y cosecha. Fue en 45 a. C. cuando el emperador romano Julio César fijó la duración del año en 365 días y ordenó que se acumularan 6 horas por año, y que cada cuatrienio se aplicara un día más, lo cual debía llevarse a cabo en febrero; así surgió el año bisiesto, Aunque el cálculo de Julio César fue muy aproximado, cometió un error, ya que al año solar no le sobran 6 horas, sino 5 horas, 48 minutos y 46 segundos. Esa pequeña diferencia no fue grave al principio, pero hacia el siglo XVI ya había producido una diferencia tan grande y un desplazamiento de las estaciones que pro ello, en 1582, el papa astrónomo Gregorio XIII determinó que el calendario fuera adelantado 19 días para actualizarse. Su calendario fue más preciso: apenas tiene un error de 1 día, 4 horas y 48 minutos en 4000 años