Assessing Science Learning In 3 Part Harmony


Published on

This was presented by Richard A. Duschl, a professor from Rutgers University Graduate School of Education, at my school district's opening day professional development workshop

Published in: Education, Technology
  • Be the first to comment

  • Be the first to like this

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide
  • Assessing Science Learning In 3 Part Harmony

    1. 1. Assessing Science Learning in 3 Part Harmony Richard Duschl GSE-Rutgers University [email_address]
    2. 2. Performances - Practices <ul><li>Piano </li></ul><ul><ul><li>Finger/hand strength and flexibility </li></ul></ul><ul><ul><li>Read muscial notation </li></ul></ul><ul><ul><li>Musical phrasing, playing with feeling </li></ul></ul><ul><ul><li>Creative musicality </li></ul></ul><ul><li>Science </li></ul><ul><ul><li>Connecting concepts </li></ul></ul><ul><ul><li>Evaluating conceptual connections </li></ul></ul><ul><ul><li>Seeking evidence </li></ul></ul><ul><ul><li>Seeking explanations </li></ul></ul><ul><ul><li>Communicating </li></ul></ul>
    3. 3. Taking Science to School: Learning and Teaching Science in Grades K-8 (NRC 2007)
    4. 4. Report on-line GOOGLE: National Academies Press Education Taking Science to School
    5. 5. <ul><li>Preventing reading difficulties in young children. Snow, Burns & Griffin (1998) </li></ul><ul><li>How People Learn. Bransford, Brown, & Cocking (1999) </li></ul><ul><li>Knowing what students know. Pellegrino, Chudowsky & Glaser (2001) </li></ul><ul><li>Adding it all up. Kilpatrick, Swafford, & Findell (2001) </li></ul><ul><li>How students learn history, mathematics and science in the classroom. Donovan & Bransford (2005) </li></ul><ul><li>America’s lab report: Investigations in HS Science . Singer, Hilton & Schweingruber (2006) </li></ul>Recent NRC Reports
    6. 6. What Is Science? <ul><li>Science involves: </li></ul><ul><ul><li>Building theories and models </li></ul></ul><ul><ul><li>Collecting and analyzing data from observations or experiments </li></ul></ul><ul><ul><li>Constructing arguments </li></ul></ul><ul><ul><li>Using specialized ways of talking, writing and representing phenomena </li></ul></ul><ul><li>Science is a social phenomena with unique norms for participation in a community of peers </li></ul>
    7. 7. Scientific Proficiency: The Four Strands <ul><li>Students who understand science: </li></ul><ul><li>Know, use and interpret scientific explanations of the natural world. </li></ul><ul><li>Generate and evaluate scientific evidence and explanations. </li></ul><ul><li>Understand the nature and development of scientific knowledge. </li></ul><ul><li>Participate productively in scientific practices and discourse. </li></ul>
    8. 8. History of Thinking about Human Mind <ul><li>Differential Perspective </li></ul><ul><ul><li>Individual, IQ and Mental Tests separate from academic learning - selecting and sorting </li></ul></ul><ul><li>Behavioral Perspective </li></ul><ul><ul><li>Stimulus/Response Associations - rewarding and punishing - Behavioral Objectives </li></ul></ul><ul><li>Cognitive Perspective </li></ul><ul><ul><li>Prior Knowledge, expert/novice, metacognition (thinking about thinking and knowning) </li></ul></ul><ul><li>Situative Perspective </li></ul><ul><ul><li>Sociocultural, language, tools, discourse </li></ul></ul>
    9. 9. Conclusion : Prior knowledge and experience are critical <ul><li>Competence is NOT determined simply by age or grade </li></ul><ul><li>What children can do is contingent on prior opportunities to learn </li></ul><ul><li>Knowledge and experience influence all four strands of proficiency </li></ul><ul><li>Prior knowledge can be both a resource and a barrier to emerging understanding </li></ul>
    10. 10. Prior knowledge and “misconceptions” <ul><li>Children’s understandings of the world sometimes contradict scientific explanations. These often described as alternative or misconceptions to be overcome. </li></ul><ul><li>Students’ prior knowledge also offers leverage points that can be built on to advance students’ science learning. </li></ul><ul><li>Emphasis on eradicating misconceptions can cause us to overlook the knowledge they bring; e.g., productive intuitions for reasoning and knowing. </li></ul>
    11. 11. Summary <ul><li>Young children are more competent than we think. They can think abstractly early on and do NOT go through universal, well defined stages. </li></ul><ul><li>Focusing on misconceptions can cause us to overlook leverage points for learning. </li></ul><ul><li>Developing rich, conceptual knowledge takes time and requires instructional support. </li></ul><ul><li>Conceptual knowledge, scientific reasoning, understanding how scientific knowledge is produced, and participating in science are intimately intertwined in the doing of science. </li></ul>
    12. 12. <ul><li>Conclusion : Sustained exploration of core set of scientific ideas is promising approach </li></ul><ul><li>Many existing curricula, standards and assessments in the US contain too many disconnected topics given equal priority. </li></ul><ul><li>Need more attention to how students’ understanding of core ideas can be supported and enhanced from grade to grade. </li></ul><ul><li>Core ideas/knowledge should be central to a discipline of science, accessible to students in kindergarten, and have potential for sustained exploration across K-8. </li></ul>
    13. 13. NAEP 2009 Science Framework <ul><li>Identifying scientific principles (30%) </li></ul><ul><li>Using scientific principles (35%) </li></ul><ul><li>Using scientific inquiry (25%) </li></ul><ul><li>Using technological design (10%) </li></ul><ul><li>% = portion of exam </li></ul>
    14. 14. National Science Education Standards Content Domains <ul><li>Big Cs </li></ul><ul><li>Life Science </li></ul><ul><li>Physical Science </li></ul><ul><li>Earth/Space Science </li></ul><ul><li>Inquiry </li></ul><ul><li>Little Cs </li></ul><ul><li>Unifying Principles & Themes </li></ul><ul><li>Science & Technology </li></ul><ul><li>Science in Personal & Social Contexts </li></ul><ul><li>Nature of Science </li></ul>
    15. 16. NAEP 2009 Science Framework <ul><li> </li></ul><ul><li>A learning progression is a sequence of successively more complex ways of reasoning with/about a set of ideas. </li></ul><ul><li>Big Ideas/Core Knowledge </li></ul><ul><li>Scientific Practices </li></ul>
    16. 17. Example: Core Ideas in a Learning Progression for Evolution <ul><li>Biodiversity </li></ul><ul><li>Structure/function </li></ul><ul><li>Interrelationships in ecosystems </li></ul><ul><li>Individual variation </li></ul><ul><li>Change over time </li></ul><ul><li>Geological processes </li></ul>
    17. 18. Growth: First Grade (Lehrer & Schauble)
    18. 19. Growth: Third Grade
    19. 20. Growth: Fifth Grade Shifts in Distribution Signal Transitions in Growth Processes
    20. 21. Immersion Units in Earth Science Richard Duschl & Bruce Herbert Rutgers University Texas A&M <ul><li>O rganized around an earth system science view </li></ul><ul><li>Special emphasis on boundary locations between systems (air/water; land/sea; etc.) </li></ul><ul><li>Where biogeochemical mechanisms take place </li></ul><ul><ul><li>Carbon Cycle(?) Rock Cycle </li></ul></ul>
    21. 22. ES Immersion Units <ul><li>Important foundational core concepts </li></ul><ul><li>scale : deep time and space, </li></ul><ul><li>energy : gravitational, thermal, tidal and solar sources, and </li></ul><ul><li>matter transformation : physical and chemical change. </li></ul>
    22. 23. Inquiry processes in the geosciences <ul><li>rely on: </li></ul><ul><li>tools and technologies (GIS) </li></ul><ul><li>lab studies (data proxies) (O 16 /O 18 ) </li></ul><ul><li>models in combination for the study and representation of earth system boundaries and mechanisms - Visualizations. </li></ul>
    23. 24. Windows on the UK 2000
    24. 25. Worldwatcher - Carbon Emissions
    25. 27. Earthquake Profiles
    26. 28. K-3 <ul><li>Early elementary grades local watersheds or coastlines as a context to study water movement and phase changes across boundaries (e.g., evaporation and condensation) and the effects moving water and phase changes have on the landscape and earth materials (e.g., soil) . </li></ul>
    27. 29. 4-6 <ul><li>Upper elementary and middle grades immersion units can focus on earth system inquires into soils, ecosystems and larger watersheds as contexts for studying water, carbon and nitrogen cycles. </li></ul>
    28. 30. 7-12 <ul><li>Middle and secondary grades immersion units should begin to situate inquiries around land use and land planning (e.g., location and impact of dams on rivers and estuaries, location and impact of sanitary landfills on ecosystems; location and design of structures near/on tectonically active regions) thus enabling inquiries on regional and global issues/problems concerning habitability and sustainability of ecosystems and earth systems. </li></ul>
    29. 31. Shifting the Focus <ul><li>From </li></ul><ul><li>Lessons, Modules Days Weeks </li></ul><ul><li>Management of Behaviors & Materials </li></ul><ul><li>Skills for doing experiments </li></ul><ul><li>Assessment of Learning </li></ul><ul><li>To </li></ul><ul><li>Sequences, Units Weeks Months Years </li></ul><ul><li>Management of Ideas & Information </li></ul><ul><li>Reasoning about experiments </li></ul><ul><li>Assessment for Learning </li></ul>
    30. 32. 3 Part Harmony <ul><li>Conceptual “what we need to know” </li></ul><ul><li>Epistemic “rules for deciding what counts” </li></ul><ul><li>Social “communicating & representing ideas, evidence and explanations” </li></ul>
    31. 34. Why Things Sink & Float <ul><li>Density LP - Floating Straws </li></ul><ul><li>Relative Density </li></ul><ul><li>Density </li></ul><ul><li>Mass </li></ul><ul><li>Volume </li></ul><ul><li>Forces LP - Floating Vessels </li></ul><ul><li>Flotation </li></ul><ul><li>Buoyancy </li></ul><ul><li>Pressure </li></ul><ul><li>Mass </li></ul><ul><li>Surface Area </li></ul><ul><li>Volume </li></ul><ul><li>Displacement </li></ul>
    32. 36. Epistemic Discourse & Data Texts <ul><li>Data Texts </li></ul><ul><ul><li>Selecting/Obtaining Raw Data </li></ul></ul><ul><ul><li>Selecting Data for Evidence </li></ul></ul><ul><ul><li>Patterns & Models of Evidence </li></ul></ul><ul><ul><li>Explanations of Patterns & Models </li></ul></ul><ul><li>Data Transformations for Epistemic Dialog </li></ul><ul><ul><li>T1 - what data count, are worth using </li></ul></ul><ul><ul><li>T2 - what patterns & models to use </li></ul></ul><ul><ul><li>T3 - what explanations account for patterns & models </li></ul></ul>
    33. 37. Science Learning Goals <ul><li>What we know </li></ul><ul><li>How we have come to know it </li></ul><ul><li>Why we believe it over alternatives </li></ul>
    34. 38. EHH Activity Sequence <ul><li>Intro Unit and Lab 1 </li></ul><ul><ul><li>Conduct prelab including demonstration of STEP test and taking a pulse. Students collect data Lab 1 </li></ul></ul><ul><li>2. Data Collection for Labs 2 and 3 </li></ul><ul><ul><li>Lab 2 - Activity Level and Heart Rate </li></ul></ul><ul><ul><li>Lab 3 - Weight and Heart Rate </li></ul></ul><ul><li>3. Data Analysis for Labs 2 and 3 </li></ul><ul><ul><li>Knowledge Forum Activity “What Matters in Getting Good Data” </li></ul></ul><ul><ul><li>Determining Trends and Patterns of Data </li></ul></ul><ul><ul><li>Developing and Evaluating Explanations for the Patterns of Data </li></ul></ul><ul><li>4. Evaluating Exercise Programs </li></ul>
    35. 39. Epistemic ‘What Counts’ Discourse & Data Texts <ul><li>Data Texts </li></ul><ul><ul><li>Selecting/Obtaining Raw Data </li></ul></ul><ul><ul><li>Selecting Data for Evidence </li></ul></ul><ul><ul><li>Patterns & Models of Evidence </li></ul></ul><ul><ul><li>Explanations of Patterns & Models </li></ul></ul><ul><li>Data Transformations </li></ul><ul><ul><li>T1 - what data count, are worth using </li></ul></ul><ul><ul><li>T2 - what patterns & models to use </li></ul></ul><ul><ul><li>T3 - what explanations account for patterns & models </li></ul></ul>
    36. 40. Probing Understandings (White & Gunstone, 1990) <ul><li>Concept Maps </li></ul><ul><li>Interviews about Instances </li></ul><ul><li>Interviews about Concepts </li></ul><ul><li>Fortune Lines </li></ul><ul><li>Drawings </li></ul><ul><li>Storyboards** </li></ul><ul><li>POEs (Predict/Observe/Explain) </li></ul><ul><li>** Project SEPIA </li></ul>
    37. 41. Exercise for a Healthy Heart <ul><li>Agree/Disagree with the following statements and provide a reason </li></ul><ul><ul><li>~It matters where you take a pulse </li></ul></ul><ul><ul><ul><li>Wrist, neck, thigh </li></ul></ul></ul><ul><ul><li>~It matters how long you take a resting pulse </li></ul></ul><ul><ul><ul><li>(6-10-15-60 seconds) </li></ul></ul></ul><ul><ul><li>~It matters how long you take an exercising pulse (6-10-15-60 seconds) </li></ul></ul><ul><ul><li>~It matters who takes a pulse </li></ul></ul>
    38. 44. Group Decision Rules 1 - Frequency 2 - Majority 3 - Average 4 - Endpoints 5 - Calculation
    39. 45. Essential Features of Classroom Inquiry <ul><li>Learners are engaged by scientific questions </li></ul><ul><li>Learners give priority to evidence , to develop & evaluate explanation to address the questions </li></ul><ul><li>Learners formulate explanations </li></ul><ul><li>Learners evaluate explanations against alternative explanations </li></ul><ul><li>Learners communicate and justify explanations. (National Research Council, 2000) </li></ul>
    40. 46. Additional Dialogic Features of Classroom Inquiry <ul><li>Learners respond to criticisms from others </li></ul><ul><li>Learners formulate appropriate criticism of others </li></ul><ul><li>Learners engage in criticism of their own explanations </li></ul><ul><li>Learners reflect on alternative explanations and not on having a unique resolution (Duschl & Grandy, 2007) </li></ul>
    41. 47. Learning as Inquiry Connelly, et al (1977) Scientific enquiry and the teaching of science. OISE Press. <ul><li>To develop an understanding of the most important content </li></ul><ul><li>To develop an understanding of the parts of a pattern of inquiry </li></ul><ul><li>To develop the reading skills and habits of mind to identify and understand knowledge claims </li></ul><ul><li>To develop the evaluative skills and habits of mind to assess the status of knowledge claims </li></ul>
    42. 48. Teaching as Inquiry <ul><li>Identify the degree of legitimate doubt attached to science knowledge </li></ul><ul><li>Assist in providing opportunities to deduce patterns and to develop intellectual capacity to inform oneself </li></ul><ul><li>Employ a strategy of teaching that allows for discovery, focuses on the central role of discussion, and promotes effective argumentation. </li></ul>
    43. 49. Thank You for Your Attention Have a Successful and Enjoyable School Year !