Cakmak agronomics

1,519 views
1,318 views

Published on

Published in: Technology, Business
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
1,519
On SlideShare
0
From Embeds
0
Number of Embeds
3
Actions
Shares
0
Downloads
43
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Cakmak agronomics

  1. 1. SYMPOSIA: Biofortification through Agronomic Practices
  2. 2. Zinc Estimated 2 billion Zn, Fe, Se and I Deficiencies: Global Malnutrition Problem www.harvestplus.org Iron Estimated 2 billion
  3. 3. Children particularly sensitive >450,000 deaths/year children under 5 – 4.4% attributed to Zn deficiency Black et al. 2008 The Lancet Maternal and Child Undernutrition Series
  4. 4. “ZINC SAVES KIDS” Campaign International Zinc Association
  5. 5. Major Reason: Low Dietary Intake High Consumption Cereal Based Foods with Low Micronutrient Concentrations In number of developing countries, cereals contributes nearly 75 % of the daily calorie intake.
  6. 6. Solutions to Micronutrient Deficiencies • Supplementation • Food Fortification (not affordable in rural regions) Golden Wheat Fortfied with Zn
  7. 7. Increase in Concentration of Non-Nutritive Elements (especially Cadmium and Arsenic) in Food Crops is a Growing Concern
  8. 8. Agricultural Solutions (Breeding and Fertilizer Approaches) •Breeding •Agronomy/Fertilizers
  9. 9. Biofortification through Agronomic Practices Short-Term Solution F. Zhang
  10. 10. SYMPOSIA SPEAKERS Ismail Cakmak (Sabanci University, Istanbul) • Fertilizer Strategy for Improving Grain Zinc and Iron Concentrations Maha V. Singh (Indian Institute of Soil Science -ICAR) • Detrimental Effects of Soil Zinc Deficiency on Crop Production and Human Nutrition in India Graham Lyons (University of Adelaide Waite Campus) • Agronomic Biofortification to Reduce Selenium Deficiency in Human Populations: Achievements and Challenges Cynthia Grant (Agriculture and Agri-Food Canada) • Agronomic Practices to Reduce Non-Nutritive Elements in Food Crops Rapporteur: Rufus Chaney, Research Agronomist, USDA
  11. 11. Fertilizer Strategy for Improving Grain Zinc and Iron Concentrations Ismail Cakmak Sabanci University, Istanbul
  12. 12. Zn Deficiency: Global Micronutrient Deficiency in Soils Alloway, 2007. IZA Publications, Brussels Widespread Medium
  13. 13. +Zn -Zn When Zn is deficient in soil or plant Grain Zn: 12 mg kg-1 Grain Zn: 35 mg kg-1
  14. 14. A successful breeding program for biofortifying cereals with micronutrients greatly depends on the amount of plant-available pools of micronutrients in the soil and/or leaf tissue for translocation into grain On soils with low plant available Zn: 8-15 ppm On soils with adeqate plant available Zn: 20-35 ppm Cakmak et al., 2010 Cereal Chem. Range of Grain Zn Concentration in Wheat in Turkey:
  15. 15. For a better Zn and Fe nutrition of human beings, cereal grains should contain around 40-60 mg Zn or Fe kg-1 Current Situation: 10-30 mg kg-1
  16. 16. Human Zinc Deficiency Moderate Not sufficient data available Low High http://www.izincg.org/ Widespread Zn Deficiency Medium Zn Deficiency Alloway, 2004. IZA Publications, Brussels Soil Zinc Deficiency Soil and Human Zn Deficiency: geographical overlap
  17. 17. Application of Micronutrient Fertilizers Application of Zn- or Fe-containing fertilizers offers a rapid solution to the problem, and represents an important complementary approach to on-going breeding programs for developing new genotypes with high Zn or Fe density in grain.
  18. 18. Global Zinc Fertilizer Project
  19. 19. Canada Germany Brazil Zimbabwe Zambia Mozambique South Africa Ethiopia Pakistan India Kazakhstan Iran Laos China Thailand Australia Turkey International Zinc Assoc. Coordinating Institution: Sabanci University Global Zinc Fertilizer Project Mexico
  20. 20. Project objectives • to test Zn-containing N-P-K fertilizers for increasing root Zn uptake and improving grain Zn concentration • to identify the effective foliar Zn application for promoting Zn accumulation in the grain • to determine an effective combination of soil and foliar application of Zn fertilizers for increasing Zn concentration in the grain • to characterize seed deposition of the leaf-applied Zn • to achieve capacity building through close cooperation and dissemination activities among scientists, agronomists, extension staff and local farmers in the target countries
  21. 21. 1) Standard/ Local Farmers’ Application (LS) 2) LS + Soil Zn (50 kg ZnSO4/ha) 3) LS +Foliar Zn (0.5 % for wheat and rice, 0.3 % for maize). 4) LS + Soil Zn+ Foliar Zn 5) LS + Foliar OMEX-Type-I 6) LS+ OMEX-Type-II 7) LS+Urea-Zn + adjustments (same rates of N, P, K 8) LS+Mosaic MESZ-Zn (and + adjustments) 9) LS+KALI KornKali-Zn (and + adjustments) 10) LS+KALI Korn Kali-Zn + Foliar Zn (+ adjustments) 11) LS+ Mosaic MESZ-Zn + Foliar Zn (+ adjustments) 12) LS+Urea MESZ+Kali+ foliar Zn Fertilizer Treatments
  22. 22. Effect of Soil and/or Foliar Applied ZnSO4 on Grain yield and Grain Zn Concentrations in Wheat Soil Zn Application : 25 to 50 kg ZnSO4.7H2O ha-1 Foliar Zn Application: Generally 2 times: before and after flowering (1 to 4 kg ZnSO4 ha-1)
  23. 23. Clinton Global Initiative highlighted the importance of Zn-containing fertilizers to alleviate Zn deficiency problem in human populations at 5th Annual Event in September 24, 2009
  24. 24. Rice Trials in Thailand
  25. 25. Maize Trials in Zambia
  26. 26. Wheat Trials in India
  27. 27. Maize Trials in Zimbabwe
  28. 28. Trials in Pakistan
  29. 29. Maize Trials in Mozambique
  30. 30. Wheat trials in China, Yanglin-Xian
  31. 31. 0 2 4 6 8 10 0 20 40 60 80 INDIA - Punjab State (Partner: Punjab Agricultural University) Grainyield,tonha-1 GrainZn,mgkg-1 1. Control 3. Foliar Appl. 4. Soil + Foliar Appl. Zn Applications 2. Soil Appl. Location-I Location-II 25 61 49 65
  32. 32. 0 2 4 6 8 0 10 20 30 40 50 60 Grainyield,tonha-1GrainZn,mgkg-1 1. Control 3. Foliar Appl. 4. Soil + Foliar Appl. Zn Applications 2. Soil Appl. Location-I Location-II 27 48 28 44 PAKISTAN (Partner: Pakistan Atomic Energy Comission)
  33. 33. 0 1 2 3 4 0 10 20 30 40 Control (No Zn) Booting + Milk Milk + Dough Foliar Zn Applications Stem + Booting No Soil Zn Appl. With Soil Zn Appl. 12 27 22 29 Grainyield,tonha-1GrainZn,mgkg-1 -Zn +Zn -Zn +Zn Cakmak et al., 2010, J. Agric. Food. Chem. TURKEY (Partner: Ministry of Agriculture)
  34. 34. 0 10 20 30 40 50 60 70 GrainZn,mgkg-1 1. Control 3. Booting 4. Tillering + Booting Foliar Zn Spray 2. Tillering 5. Milk Cultivar Akmola Cultivar Trizo KAZAKHSTAN (Partner: CIMMYT Kazakhstan) WHEAT 19 54 18 44
  35. 35. Grain Zn concentration in different countries with and without zinc fertilization Average of all countries -Zn: 26 +Zn:50 Country/Location -Zn +Zn India Varanasi 29 47 PAU-I 25 81 PAU-II 28 77 PAU-III 26 61 PAU-IV 49 65 IARI 33 45 Kazakhstan Loc-I 19 54 Loc-II 28 73 Pakistan Loc-I 27 48 Loc-II 28 44 Loc-III 30 40 Loc-IV 29 60 mg kg -1 Country/Location -Zn +Zn Mexico Year-I 21 45 Year-II 36 60 Turkey Konya 12 29 Adana 32 57 Samsun 23 49 Eskisehir 22 43 China Loc-I 28 54 Loc-II 19 26 Australia Loc-I 18 39 Germany Average 20 32 Iran Average 17 28 Brazil Average 30 52 mg kg -1
  36. 36. Country/Location -Zn +Zn India Varanasi 29 47 PAU-I 25 81 PAU-II 28 77 PAU-III 26 61 PAU-IV 49 65 IARI 33 45 Kazakhstan Loc-I 19 54 Loc-II 28 73 Pakistan Loc-I 27 48 Loc-II 28 44 Loc-III 30 40 Loc-IV 29 60 mg kg -1 Country/Location -Zn +Zn Mexico Year-I 21 45 Year-II 36 60 Turkey Konya 12 29 Adana 32 57 Samsun 23 49 Eskisehir 22 43 China Loc-I 28 54 Loc-II 19 26 Australia Loc-I 18 39 Germany Average 20 32 Iran Average 17 28 Brazil Average 30 52 mg kg-1 Average Concentrations of Grain Zn (10 Countries with 32 locations) -Zn: 26 ppm +Zn: 50 ppm Grain Zn concentration in different countries with and without zinc fertilization
  37. 37. Staining/Localization of Zinc in Wheat Grain (red color) EMBRYO ENDOSPERM ALEURONE ALEURONE Cakmak et al., 2010 Cereal Chemistry, 77: 10-20
  38. 38. Localization of Zn in grain after foliar application?
  39. 39. LA-ICP-MS Tests on Seeds 0 100 200 300 400 500 600 700 800 900 1000 0 500 1000 1500 2000 2500 3000 3500 4000 Distance (µm) Znconcentration(mg/kg) 0.0 2.0 4.0 6.0 8.0 10.0 12.0 0 500 1000 1500 2000 Distance (µm) Znconcentration(mg/kg) Cakmak et al., 2010, J. Agric. Food. Chem. White arrow: Zn in entire cross section Black arrow: Zn in endosperm section entire cross section endosperm section
  40. 40. 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 3500 4000 Distance (µm) Znconcentration(mg/kg) 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 3500 Distance (µm) Znconcentration(mg/Kg) 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500 2000 2500 3000 3500 Distance (µm) Znconcentration(mg/kg) 0 5 10 15 20 25 0 200 400 600 800 1000 1200 1400 1600 Distance (µm) Znconcentration(mg/kg) 0 5 10 15 20 25 0 500 1000 1500 2000 Distance (µm) Znconcentration(mg/kg) 0 5 10 15 20 25 0 200 400 600 800 1000 1200 1400 Distance (µm) Znconcentration(mg/Kg) No Foliar Zn Application Foliar Zn Application at Stem Elongation and Booting Stages Foliar Zn Application at Milk and Dough Stages B cr cr cr Endosperm Endosperm Endosperm LA-ICP-MS Tests Cakmak et al., 2010, J. Agric. Food. Chem. 58:9092-9102
  41. 41. No Zn Zn applied at stem elongation and boot Zn applied at milk and and dough stages 0 5 10 15 20 25 0 200 400 600 800 1000 1200 1400 1600 Distance (µm) Znconcentration(mg/kg) 0 5 10 15 20 25 0 500 1000 1500 2000 Distance (µm) Znconcentration(mg/kg) 0 5 10 15 20 25 0 200 400 600 800 1000 1200 1400 Distance (µm) Znconcentration(mg/Kg) Changes in Endosperm Zinc Concentrations Cakmak et al., 2010, J. Agric. Food. Chem.
  42. 42. 0 20 40 60 80 1. Control (No Zn) 3. Booting + Milk 4. Milk + Dough 2. Stem + Booting GrainZn,mgkg-1 Turkey 32 57 23 49 Location Adana Location Samsun 0 20 40 60 80 37 64 29 55 High Nitrogen Low Nitrogen 58 51 Grain Zn Concentrations as Affected from Soil N Fertilization and Foliar Zn Applications in Turkey Cakmak et al., 2010 J. Agric Food Chem
  43. 43. Changes in shoot and grain concentrations of Fe and Zn depending on N supply Nitrogen Effect
  44. 44. 10 15 20 25 30GRAINZn(ppm) 20 30 40 50 60 ZnYIELD(g/ha) 0 40 80 120 N (kg/ha) Zn YIELD (g/ha) GRAIN Zn (ppm) EFFECTS of N FERTILIZATION on GRAIN Zn CONCENTRATIONS and GRAIN Zn-YIELD Cakmak et al., 2010b
  45. 45. Possible Nitrogen/Protein Effects on Zn/Fe Concentration of Seeds Seed Effect •protein synthesis •storage proteins •sink activity Re-translocation/Phloem Loading •N-containing chelators •Transporter proteins Transport •N-containing chelators •Proteins contributing to xylem loading •… Mobilization & Uptake •Transporter proteins mediating uptake •Root exudation (e.g., phytosiderophores) •Root growth •Microbial activity
  46. 46. Effect of increasing N supply on root uptake and root-to-shoot translocation of Zn in wheat
  47. 47. 65Zn uptake rates and root-to-shoot translocation rates of 22-day-old wheat seedlings precultured with low (0.5 mM), medium (1.0 mM) or high (4.0 mM) N supply. Erenoglu et al., 2010, New Phytologist 65Zn uptake rates root-to-shoot translocation
  48. 48. Grain K Concentration No Foliar Application 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 Low Adequate High Soil Zn Supply Grain[K](%) Grain K Concentration Foliar Zn Application 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 Low Adequate High Soil Zn Supply Grain[K](%) Grain Fe Concentration Foliar Zn Application 0 10 20 30 40 50 60 70 Low Adequate High Soil Zn Supply Grain[Fe](mg.kg -1 ) Grain Fe Concentration No Foliar Application 0 10 20 30 40 50 60 70 Low Adequate High Soil Zn Supply Grain[Fe](µg.g -1 ) Grain Zn Concentration Foliar Zn Application 0 10 20 30 40 50 60 70 80 90 100 110 Low Adequate High Soil Zn Supply Grain[Zn](µg.g -1 ) Grain Zn Concentration No Foliar Application 0 10 20 30 40 50 60 70 80 90 100 110 Low Adequate High Soil Zn Supply Grain[Zn](µg.g -1 ) Low N Adequate N High N Zinc Iron Potassium Effect of Increasing Supply of Zn and N on Grain Concentrations of Zn, Fe and K Kutman et al., 2010 Cereal Chem
  49. 49. 65ZnSO4 65Zn Effect of N nutrition on transport and accumulation of 65Zn in grain after the treatments of the flag leaves with 65Zn-labelled solution Growth at 3 N levels in soil 65Zn Flag Leaf Erenoglu et al., 2010, New Phytol.
  50. 50. 0 0.1 0.2 0.3 0.4 0.5 0.6 60 180 540 Grain65Zn/Flagleaf65Zn(%) N supply, mg kg-1 soil 65Zn-Translocation Efficiency into Grain Erenoglu et al., 2010, New Phytol. in press
  51. 51. Distribution and partitioning of Fe and Zn among the stems, leaves, husks and grains in wheat grown with low and adequate N supply in greenhouse Kutman et al. 2010b
  52. 52. Shoot Part Low N High N Low N High N Husks 9 7 10 6 Grains 38 60 59 78 Leaves 48 28 17 8 Stem 5 6 14 7 Fe Zn Zinc and Iron Partitioning (%) at Maturity Kutman et al. 2010, in review Nitrogen Dependent
  53. 53. High Protein in Seed: a Sink for Zn and Fe ?
  54. 54. Possible Nitrogen/Protein Effects on Zn/Fe Concentration of Seeds Seed Effect •protein synthesis •storage proteins •sink activity Re-translocation/Phloem Loading •N-containing chelators •Transporter proteins Transport •N-containing chelators •Proteins contributing to xylem loading •… Mobilization & Uptake •Transporter proteins mediating uptake •Root exudation (e.g., phytosiderophores) •Root growth •Microbial activity Cakmak et al., 2010 Cereal Chem, 77: 10-20
  55. 55. Cakmak et al., 2010 Cereal Chem, 77: 10-20 Staining of Protein, Zinc and Iron in Wheat Grain Protein Zinc Iron
  56. 56. Cakmak et al., 2010 Cereal Chem, 77: 10-20 Staining of Protein, Zinc and Iron in Wheat Grain Protein Zinc Iron High Protein in Seed: a Sink for Zn and Fe
  57. 57. Int’l Zinc Assoc. Acknowledgement Mosaic Co. K+S Kali IFA IPNIOmex Agrifluids
  58. 58. Sabanci University Thank you… Thank You… Sabanci University
  59. 59. Change in Nutrient Composition With Milling Affects Bioavailability & Warrants Consideration in Breeding % of Total in Unmilled Grain
  60. 60. WHOLE GRAIN WHOLE GRAIN WHITE FLOURMILLING Phytate/Znratio +Zn -Zn No foliar Zn application After foliar Zn application
  61. 61. SEED ZINC Increasing Resistance to Diseases Decreasing Seeding Rate Better Seed Viability and Seedling Vigor Improving Abiotic Stress Tolerance Improving Human Nutrition Higher Yield under Zn Deficiency Agronomic and human nutritional benefits resulting from use of Zn-enriched seeds Cakmak, 2008; Plant and Soil, 302: 1-17

×