Design Optimization of Natural Laminar Airfoil<br />지도 교수<br />           조창열<br />연구ㆍ발표자<br /> 김근우, 김동춘, 김현준<br />2008. 1...
Table of Contents<br />Objective<br />Research Techniques<br />Validation of Flow Solver<br />Optimization Framework<br />...
1. Objective<br />Research Objective<br />○ Design Optimization of 2-D Natural Laminar Airfoil<br />5 Reasons to Optimize<...
2. Research Techniques (1)<br />CFD Analysis of Low Reynolds No. Transitional Flow<br />○ Use k-ω SST TRANSITIONAL MODEL<b...
2. Research Techniques (2)<br />Optimization Techniques<br />○ Optimization Algorithms : GBOM, MMFD<br />○ Numerical Optim...
2. Research Techniques (3)<br />Airfoil Shape Design Method<br />○ Use NURBS Shape Function<br />                  -> Exce...
3. Validation of Flow Solver (1)<br />Testing Low Reynolds No. Transitional Flow<br />○ Key Features of Design<br />      ...
3. Validation of Flow Solver (2)<br />Simulating Separation Bubble<br />○ K-ω SST Transitional Model Simulates Separation ...
3. Validation of Flow Solver (3)<br />Testing Low Reynolds No. Transitional Flow<br />○ Rec = 3.0 X 106 / Chord Length = 9...
4. Optimization Framework(1)<br />Components of Optimization Framework<br />○ Easy, Flexible, Reliable and Robust Design O...
4. Optimization Framework(2)<br />Optimization Framework Workflow<br />
5. Formulation of Problem(1)<br />Design Condition<br />○ Angle of Attack : 4.2˚ / REC = 1.56 X 106<br />○ Minimum Lift Co...
5. Formulation of Problem(2)<br />NURBS Shape Function<br />○ Excellent in Local Shape Modification, More Smooth Curve<br ...
5. Formulation of Problem(2)<br />Optimization Algorithm<br />○ Gradient Based Optimization Method (GBOM)<br />    Gradien...
6. Design Optimization Results (1)<br />Symmetric Airfoil Optimization (Drag Minimization)<br />○ Transition position move...
6. Design Optimization Results (2)<br />Cambered Airfoil Design (Endurance Param. Maximization)<br />○ Area of pressure co...
6. Design Optimization Results (3)<br />Cambered Airfoil Design (Endurance Param. Maximization)<br />
7. Conclusion<br />  ○ In a view point of speed of optimization, approximate concepts      for numerical optimization is c...
Thanks for Listening<br />&lt; Question & Answer Time &gt;<br />
Upcoming SlideShare
Loading in …5
×

층류 익형의 설계 최적화

1,150 views
1,050 views

Published on

Published in: Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,150
On SlideShare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

층류 익형의 설계 최적화

  1. 1. Design Optimization of Natural Laminar Airfoil<br />지도 교수<br /> 조창열<br />연구ㆍ발표자<br /> 김근우, 김동춘, 김현준<br />2008. 12. 12. (Fri)<br />
  2. 2. Table of Contents<br />Objective<br />Research Techniques<br />Validation of Flow Solver<br />Optimization Framework<br />Formulation of Optimization Problem<br />Design Optimization Results<br />Conclusion<br />
  3. 3. 1. Objective<br />Research Objective<br />○ Design Optimization of 2-D Natural Laminar Airfoil<br />5 Reasons to Optimize<br /> ○ Needs Long Endurance Performance<br /> ○ Needs High Lift Coefficient<br /> ○ Low Reynolds No.-Transitional Flow Flight<br /> ○ Test and Validate CFD Code<br /> ○ Establish Optimization Framework<br />
  4. 4. 2. Research Techniques (1)<br />CFD Analysis of Low Reynolds No. Transitional Flow<br />○ Use k-ω SST TRANSITIONAL MODEL<br />○ Use FLUENT for Flexibility and Reliability<br />Aerodynamic Design Optimization of Airfoils<br />○ Setup of Design Framework<br />○ Validation of CFD Analysis<br />○ Formulation of Optimization Problem<br />○ Design Optimization<br />
  5. 5. 2. Research Techniques (2)<br />Optimization Techniques<br />○ Optimization Algorithms : GBOM, MMFD<br />○ Numerical Optimization Code : DOT<br />○ Mathematical Formulation of Function<br /> -> Use Taylor Series Expansion<br />Network-Distributed Computation<br />○ Use Network-Distributed Computation<br />○ TCP/IP Network Environment<br /> -> O/S Independent For Optimization<br />
  6. 6. 2. Research Techniques (3)<br />Airfoil Shape Design Method<br />○ Use NURBS Shape Function<br /> -> Excellent in Local Control of Shape<br /> ○ Use CATIA for Shape Export<br /> -> IGES, STEP, STL, 3DXML….<br />.NET Framework-Based Programming Model<br />○ Easy and Powerful Rapid Programming Model<br />○ O/S Independent, Can Be Used in Handheld Devices<br />○ Ensure Portability for Various Programming Language<br />
  7. 7. 3. Validation of Flow Solver (1)<br />Testing Low Reynolds No. Transitional Flow<br />○ Key Features of Design<br /> -> Low Reynolds No. Flow Includes Transition<br /> -> Needs High Lift Coefficient<br /> -> Used for High Aspect Ratio Wing<br /> ○ NACA 653-018 Airfoil<br /> ○ Low Reynolds. No Flow Analysis<br /> ○ RANS+LRN K-ω Model<br /> ○ Boundary Layer Clustered Grid System<br /> ○ 65 X 370 Cells<br />Grid System of NACA 653-018<br />
  8. 8. 3. Validation of Flow Solver (2)<br />Simulating Separation Bubble<br />○ K-ω SST Transitional Model Simulates Separation Bubble Well<br />
  9. 9. 3. Validation of Flow Solver (3)<br />Testing Low Reynolds No. Transitional Flow<br />○ Rec = 3.0 X 106 / Chord Length = 90 in.<br />○ Pressure-Based Solver / K-ω SST Transitional Model<br /> ○ Turbulent Intensity / Length Scale<br /> -> NASA Langley Low Turbulence Wind Tunnel<br />
  10. 10. 4. Optimization Framework(1)<br />Components of Optimization Framework<br />○ Easy, Flexible, Reliable and Robust Design Optimization Framework<br />
  11. 11. 4. Optimization Framework(2)<br />Optimization Framework Workflow<br />
  12. 12. 5. Formulation of Problem(1)<br />Design Condition<br />○ Angle of Attack : 4.2˚ / REC = 1.56 X 106<br />○ Minimum Lift Coefficient : CL = 1.28 (Cambered Airfoil)<br />Design Problem<br />○ Initial Airfoil Design : NACA0018<br />○ Objective Function <br /> -> Minimize Drag Coefficient (Symmetric Airfoil)<br /> -> Maximize Endurance Parameter (Cambered Airfoil)<br />○ Constraints<br /> -> Subject to CL(X) &gt; 1.28 (Cambered Airfoil)<br /> A(X) = A0 (Area of Airfoil)<br />
  13. 13. 5. Formulation of Problem(2)<br />NURBS Shape Function<br />○ Excellent in Local Shape Modification, More Smooth Curve<br />○ Reduce Design Variable -> Reduce Computational Cost<br /> ○ Use 4th Order Blending Function / Use 10 Control Points<br />4<br />3<br />2<br />1<br />5<br />9<br />6<br />8<br />7<br />10<br />
  14. 14. 5. Formulation of Problem(2)<br />Optimization Algorithm<br />○ Gradient Based Optimization Method (GBOM)<br /> Gradient-Based Optimization Method can be easily programmed and useful if design space is not distorted.<br /> -> Optimizer does not know what kind of problem it is solving.<br /> -> Before optimization process starts, it is necessary to check if design space is distorted or not.<br />○ Method of Modified Feasible Direction Search (MMFD)<br /> Method of Modified Feasible Direction needs two stage of optimization.<br /> -> Finding search direction to find feasible region in design space.<br /> -> One-dimensional search determines how design variable can be far from the initial design.<br />
  15. 15. 6. Design Optimization Results (1)<br />Symmetric Airfoil Optimization (Drag Minimization)<br />○ Transition position moved towards trailing edge.<br />○ Delaying transition can reduce drag.<br />○ That is, drag could be reduced by maintain more laminar flow region.<br />
  16. 16. 6. Design Optimization Results (2)<br />Cambered Airfoil Design (Endurance Param. Maximization)<br />○ Area of pressure coefficient is wider than initial design. Cl is increased.<br />○ Drag coefficient increased too. But optimizer limits increasing of drag coefficient effectively.<br />
  17. 17. 6. Design Optimization Results (3)<br />Cambered Airfoil Design (Endurance Param. Maximization)<br />
  18. 18. 7. Conclusion<br /> ○ In a view point of speed of optimization, approximate concepts for numerical optimization is competitive method than other<br /> algorithm like RSM, GA, etc...<br /> ○ Reasonable design results we can get with<br /> -> Drag Minimized for Symmetric Airfoil<br /> -> Endurance Parameter Maximized for Cambered Airfoil<br /> ○ By using NURBS for shape design, we could reduce design variables and calculation cost.<br /> ○ By using LRN K-ω SST Transitional Model, low reynolds no. flow field and transitional phenomena simulate well. But flow filed includes transition, there may be separation bubble near the wall. But Fluent doesn’t predict this phenomenon sufficiently. Fluctuation of solution delays finishing calculation.<br /> ○ Codes that supports automation API(application programming interface) or internal script can be adopted for this framework.<br />
  19. 19. Thanks for Listening<br />&lt; Question & Answer Time &gt;<br />

×