QM-030-Six Sigma vs Design for Six Sigma

3,477
-1

Published on

Published in: Economy & Finance
2 Comments
9 Likes
Statistics
Notes
No Downloads
Views
Total Views
3,477
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
0
Comments
2
Likes
9
Embeds 0
No embeds

No notes for slide
  • QM-030-Six Sigma vs Design for Six Sigma

    1. 1. Six Sigma vs. Design for Six Sigma (DFSS) Dr. Suresh C. Rama Senior Manager, Quality Systems Global Engine Manufacturing Alliance (GEMA) Dundee, MI
    2. 2. Presentation Overview <ul><li>Introduction to Quality </li></ul><ul><ul><li>Defining Quality </li></ul></ul><ul><ul><li>Measuring Quality </li></ul></ul><ul><li>Six Sigma </li></ul><ul><ul><li>Method </li></ul></ul><ul><ul><li>Tools </li></ul></ul><ul><li>Design for Six Sigma </li></ul><ul><ul><li>Method </li></ul></ul><ul><ul><li>Tools </li></ul></ul><ul><li>Implementation Enablers </li></ul><ul><li>Challenges </li></ul>
    3. 3. What are these companies have in common? PROFITABILITY QUALITY CUSTOMER LOYALTY INNOVATION
    4. 4. Defining Quality <ul><li>A study asking Managers from 86 firms in the U.S. to define quality produced several responses including: </li></ul><ul><ul><li>Perfection </li></ul></ul><ul><ul><li>Consistency </li></ul></ul><ul><ul><li>Eliminating Waste </li></ul></ul><ul><ul><li>Speed of Delivery </li></ul></ul><ul><ul><li>Compliance to procedures, specifications, etc. </li></ul></ul><ul><ul><li>Providing good and usable product </li></ul></ul><ul><ul><li>Doing it right the first time </li></ul></ul><ul><ul><li>Delighting or pleasing customers </li></ul></ul><ul><ul><li>Total customer service and satisfaction </li></ul></ul>Extracted from “The Management and Control of Quality”, by Evans and Lindsay
    5. 5. Defining Quality <ul><li>Quality is many things to many people in many parts of the organization </li></ul><ul><li>Quality can be defined based following criteria: </li></ul><ul><ul><li>Judgmental Criteria </li></ul></ul><ul><ul><ul><li>Goodness/Excellence of a Product/Image </li></ul></ul></ul><ul><ul><li>Product-Based Criteria </li></ul></ul><ul><ul><ul><li>The More the Better </li></ul></ul></ul><ul><ul><li>User-Based Criteria </li></ul></ul><ul><ul><ul><li>Fitness for intended use </li></ul></ul></ul><ul><ul><li>Value-Based Criteria </li></ul></ul><ul><ul><ul><li>Relationship to usefulness/satisfaction to price </li></ul></ul></ul><ul><ul><li>Manufacturing-Based Criteria </li></ul></ul><ul><ul><ul><li>Conformance to specifications </li></ul></ul></ul>Extracted from “The Management and Control of Quality”, by Evans and Lindsay
    6. 6. Integrating Perspectives on Quality <ul><li>David Garvin’s 8 principle quality dimensions </li></ul><ul><ul><li>Performance </li></ul></ul><ul><ul><li>Features </li></ul></ul><ul><ul><li>Reliability </li></ul></ul><ul><ul><li>Conformance </li></ul></ul><ul><ul><li>Durability </li></ul></ul><ul><ul><li>Serviceability </li></ul></ul><ul><ul><li>Aesthetics </li></ul></ul><ul><ul><li>Perceived Quality </li></ul></ul>Extracted from “The Management and Control of Quality”, by Evans and Lindsay
    7. 7. Quality as a Strategy <ul><li>Competitive Advantage: Firm’s ability to achieve market superiority. </li></ul><ul><li>Wheelwright’s 6 characteristics for sustained competitive advantage: </li></ul><ul><ul><li>Driven by Voice of the Customer </li></ul></ul><ul><ul><li>Contributes to successful business </li></ul></ul><ul><ul><li>Uses resources effectively </li></ul></ul><ul><ul><li>Difficult for competitors to copy </li></ul></ul><ul><ul><li>Basis for continuous improvement </li></ul></ul><ul><ul><li>Motivates the entire organization </li></ul></ul><ul><li>Does Quality play a role in any of these characteristics? </li></ul>Extracted from “The Management and Control of Quality”, by Evans and Lindsay
    8. 8. Quality as a Strategy
    9. 9. Measuring Quality - Quality and Sigma <ul><li>“ Quality” is the degree of excellence of a product, process or service from the customer’s viewpoint </li></ul><ul><li>Virtually every activity has variation - if the outcome is too far from the target value (beyond a specification limit) , a defect occurs </li></ul><ul><li>Standard deviation,  , is a measure of variation from the target </li></ul><ul><li>Sigma Level, Z, of a process is: </li></ul><ul><li> (Spec Limit - Target) </li></ul><ul><li> Z = </li></ul><ul><li> Std Dev  </li></ul><ul><li>Sigma Level measures the probability of achieving a defect-free outcome </li></ul>Sigma Level = 3 Target Upper Spec Limit Lower Spec Limit  Defects Defects 3 
    10. 10. What is 6 Sigma? <ul><li>Common definition: 3.4 defects / million opportunities </li></ul><ul><li>Applicability: All business processes (Manufacturing , IT, Finance, Marketing) </li></ul>** Waste due to additional inspection, tests, rework, scrap, customer dissatisfaction, etc. (Source: “Six Sigma” by Mikel Harry) Allowable Process Mean Shifts with time ( ± 1.5   from Design Target) 6  Upper Specification Limit Lower Specification Limit Design Target
    11. 11. Benefits of 6 Sigma • Generic Sigma Level Defects Per Million Cost % of Sales * 3 66,807 25 - 40% 4 6,210 15 - 25% 5 233 5 - 15% 6 3.4 < 1% Savings (3 to 4.7 Sigma): $250K per project Benefits (4.7 to 6 Sigma): Greater market share • Savings Realized ** – GE: $750M (‘98), $1.5B (‘99) – Motorola: $800-$900M / year ($15B over 11 years) – ABB: $900M / year – Allied Signal: $500M (‘98), $600M (‘99) * Waste due to additional inspection, tests, rework, scrap, customer dissatisfaction, etc. ** Quoted savings from the book “Six Sigma” by Mikel Harry & Richard Schroeder; Allied Signal quote from Industry Week
    12. 12. The 6 Sigma Method of Quality Improvement <ul><li>Structured, data-driven problem-solving method </li></ul><ul><ul><li>“ DMAIC”: D efine, M easure, A nalyze, I mprove, C ontrol </li></ul></ul><ul><ul><li>Based on statistics, process analysis and process control </li></ul></ul><ul><li>Developed by Motorola; used successfully by TI, AlliedSignal, GE, ... </li></ul><ul><li>Goal: improve the quality of existing processes </li></ul><ul><ul><li>Manufacturing, business transactions, etc </li></ul></ul><ul><li>Payoffs: </li></ul><ul><ul><li>Internal productivity improvement (lean processes) </li></ul></ul><ul><ul><li>Capacity gain (lean resource management) </li></ul></ul>Six Sigma: driver for cost savings
    13. 13. How does 6 sigma work? <ul><li>Visualize and Develop a Goal </li></ul><ul><li>Obtain a Coach/Mentor </li></ul><ul><li>Set the right Metrics </li></ul><ul><li>Understand the relationships between influencing factors (x)s and the effects/output (y)s. y = f(x) </li></ul><ul><li>Create a standradized process that develops a roadmap to the Goal </li></ul><ul><li>Now identify and implement the right Tools </li></ul><ul><li>Implementing Tools without the right Process, Strategy and Goal </li></ul>
    14. 14. The 6 Sigma Focus <ul><li>Y </li></ul><ul><li>Output </li></ul><ul><li>Effect </li></ul><ul><li>Symptom </li></ul><ul><li>Monitor </li></ul><ul><li>x’s </li></ul><ul><li>Inputs </li></ul><ul><li>Root Causes </li></ul><ul><li>Problems </li></ul><ul><li>Fix & Control </li></ul>Output Y = f (Process Variables x 1 , x 2 , …, x n ) <ul><li>Many quality approaches focus on inspecting and fixing outputs (e.g., products) </li></ul><ul><li>Six Sigma focuses on fixing and controlling key process variables which cause output defects </li></ul>
    15. 15. The “5 Sigma Wall” Break through the “5  wall” by redesign for manufacturability Process Improvements Plus Product Redesign to Match Improved Process Capability Time Sigma Level 6 5 4 3 Redesign Benefit Process Improvements Only “ 5  Wall”
    16. 16. Can 6 Sigma be applied to Engineering? <ul><li>It is difficult to apply classic Six Sigma to Engineering for new products </li></ul><ul><ul><li>Engineering focuses on innovation , not process improvement </li></ul></ul><ul><ul><li>Defect baselines not known for new, innovative designs </li></ul></ul><ul><li>And, most major new product quality problems are in performance and reliability , not manufacturability </li></ul><ul><li>Engineering should focus on preventing problems </li></ul><ul><li>Need Six Sigma extension to new product creation “Design for Six Sigma” - DFSS! </li></ul>
    17. 17. 6 Sigma vs. Design for Six Sigma Traditional 6-Sigma - Reactive Design for Six Sigma - Proactive Minimize sensitivity to variation by choosing good nominal values for Xs Minimize variation (sigma) by process capability improvement
    18. 18. What is Design For Six Sigma (DFSS)? <ul><li>Design for Six Sigma (DFSS) is a strategy, a concept, a process and a set of tools </li></ul><ul><ul><li>Strategy: To develop new and better products/processes to address the “voice of the customer” </li></ul></ul><ul><ul><li>Concept: To drive robust engineering (product & process) and validation with focus on “problem prevention.” </li></ul></ul><ul><ul><li>Process: To translate “voice of the customer” to engineering requirements and optimize the relationship between influencing factors and their effects on customers to achieve and sustain high quality levels. </li></ul></ul><ul><ul><li>Tools: Enablers for execution of the process to align with the “strategy.” </li></ul></ul>
    19. 19. DFSS Strategy: Revolutionize Design & Engineering Proactive Design Quality DFSS Reactive Design Quality FIRE- FIGHTING FIRE- PROOFING <ul><li>To </li></ul><ul><li>Quality “DESIGNED IN” </li></ul><ul><li>Customer focused design requirements </li></ul><ul><li>Disciplined and standardized design process </li></ul><ul><li>Focus on system level designs and functions </li></ul><ul><li>Performance predictions using analytical methods </li></ul><ul><li>Designed up-front for robust performance & manufacturability </li></ul><ul><li>Easier system integration </li></ul><ul><li>From </li></ul><ul><li>Quality “TESTED IN” </li></ul><ul><li>Evolving product design requirements </li></ul><ul><li>Product team specific design process </li></ul><ul><li>Focus on components and subsystems </li></ul><ul><li>Performance assessment by “build and test” </li></ul><ul><li>Performance & manufacturability problems fixed during and after launch </li></ul><ul><li>Difficult system integration </li></ul>
    20. 20. DFSS Process D. F. S. S. Customer Happy Optimize Design Optimize Quality, Reliability and Durability and improve Robustness Verify & Validate Verify predicted Quality and Reliability Develop Concepts Develop, select and synthesize concepts for better designs Identify Opportunity Select Projects based on Quality indicators and gap to targets Define Requirements Translate Voice of the Customer to Design Requirements
    21. 21. Key DFSS Tools <ul><li>Capture Voice of Customer & Define Eng. Requirements </li></ul><ul><ul><li>Wants & needs tools </li></ul></ul><ul><ul><li>Customer use observations </li></ul></ul><ul><ul><li>Kano Analysis </li></ul></ul><ul><ul><li>Quality Function Deployment (QFD) </li></ul></ul><ul><li>Develop Concepts and Select </li></ul><ul><ul><li>Pugh Matrix </li></ul></ul><ul><ul><li>Axiomatic Design </li></ul></ul><ul><ul><li>TRIZ </li></ul></ul><ul><ul><li>Failure Mode & Effects Analysis (FMEA) </li></ul></ul><ul><li>Develop Detailed Design </li></ul><ul><ul><li>Systems Engineering </li></ul></ul><ul><ul><li>Function Models & FMEAs </li></ul></ul><ul><ul><li>Transfer Functions </li></ul></ul><ul><li>Statistical Design </li></ul><ul><ul><li>Monte Carlo Analysis </li></ul></ul><ul><li>Design for Robust Performance </li></ul><ul><ul><li>Design of Experiments </li></ul></ul><ul><ul><li>Robust Design </li></ul></ul><ul><ul><li>Design for Reliability </li></ul></ul><ul><li>Design for Manufacturability </li></ul><ul><ul><li>Process Capability Databases </li></ul></ul><ul><ul><li>Statistical Tolerancing </li></ul></ul><ul><li>Predict Quality </li></ul><ul><ul><li>DFSS Scorecards </li></ul></ul>
    22. 22. FMEA: Pro-Active Quality Tool Risk Reduction <ul><li>Purpose of a FMEA: </li></ul><ul><li>Risk Reduction to Customer(s) </li></ul><ul><ul><li>End user </li></ul></ul><ul><ul><li>Manufacturing/Assembly </li></ul></ul><ul><ul><li>Service </li></ul></ul><ul><li>Risk Reduction to comply with or exceed Government Regulations </li></ul><ul><ul><li>Safety </li></ul></ul><ul><ul><li>Regulatory </li></ul></ul>Competitive Advantage Right Execution
    23. 23. Key Successful Factors for DFSS Implementation <ul><li>Develop a strategy that fits the culture </li></ul><ul><li>Obtain true leadership from the top </li></ul><ul><li>Execute flawlessly (ownership & accountability) </li></ul><ul><li>Create a mentoring infrastructure (x-functional) </li></ul><ul><li>Communicate results early and often </li></ul><ul><li>Make it a way of doing business (integration) </li></ul>
    24. 24. Implementation Challenges <ul><li>Cultural </li></ul><ul><li>Resistance to change: </li></ul><ul><ul><li>“ Why change our design process?” </li></ul></ul><ul><ul><li>“ We’re different” </li></ul></ul><ul><ul><li>“ We already do that” </li></ul></ul><ul><li>Cost and disruption of training </li></ul><ul><li>Fear that design cycle times will be longer, costs higher </li></ul><ul><li>Integrating DFSS with existing development processes </li></ul><ul><li>Technical </li></ul><ul><li>Paradigm change </li></ul><ul><ul><li>Statistical versus deterministic </li></ul></ul><ul><li>New methods and tools </li></ul><ul><ul><li>Systems engineering </li></ul></ul><ul><ul><li>Design of experiments </li></ul></ul><ul><ul><li>Robust design </li></ul></ul><ul><ul><li>Design for reliability </li></ul></ul><ul><ul><li>Statistical tolerancing </li></ul></ul><ul><ul><li>Multi-variable optimization </li></ul></ul><ul><ul><li>... </li></ul></ul>Leadership must overcome them
    25. 25. Message from Leadership <ul><li>DFSS must become a religion </li></ul><ul><li>Be an embodiment of 6 sigma ( be competent ) </li></ul><ul><li>Radiate ( train and spread ) DFSS into every business/organization </li></ul><ul><li>Be a lunatic on the subject ( drive it hard ) </li></ul><ul><li>Conduct DFSS reviews in the field </li></ul><ul><li>Set goals based on 6 sigma metrics </li></ul><ul><li>You have my full support to be outrageous on this issue </li></ul>
    26. 26. Remember? What are these companies have in common? All of them use Design for Six Sigma - effectively
    27. 27. Making Six Sigma/DFSS Successful <ul><li>Leadership from the top is crucial </li></ul><ul><ul><li>Clearly communicate the Quality vision </li></ul></ul><ul><ul><li>Demand Quality </li></ul></ul><ul><ul><li>Drive discipline </li></ul></ul><ul><li>Drive Quality by measurable, “stretch” goals </li></ul><ul><ul><li>Alignment of employee goals to organization’s goals </li></ul></ul><ul><ul><li>Six Sigma & DFSS are not a “cure-all” for Quality by themselves </li></ul></ul><ul><li>Involve everyone </li></ul><ul><ul><li>Don’t leave Quality to “quality specialists and professionals” </li></ul></ul><ul><ul><li>Train everyone in basic Six Sigma/DFSS competence </li></ul></ul><ul><li>Regard Quality as a cultural change , not just a toolset </li></ul><ul><ul><li>Make Quality a part of the organization’s DNA </li></ul></ul>
    28. 28. THANK YOU! Questions?

    ×