• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Curriculum Studies Assignment
 

Curriculum Studies Assignment

on

  • 4,506 views

My MA International Education assignment for the Curriculum Studies unit.

My MA International Education assignment for the Curriculum Studies unit.

Statistics

Views

Total Views
4,506
Views on SlideShare
4,043
Embed Views
463

Actions

Likes
1
Downloads
0
Comments
0

1 Embed 463

http://ibiologystephen.wordpress.com 463

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

CC Attribution-ShareAlike LicenseCC Attribution-ShareAlike License

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Curriculum Studies Assignment Curriculum Studies Assignment Document Transcript

    • Stephen Taylor Curriculum Studies         A  critical  review  of  a  Grade  10  Introductory  Physics  course  as  part   of  the  International  Baccalaureate  Middle  Years  Programme,   examining  selected  aims  and  purposes  and  analyzing  the  extent   to  which  these  are,  in  my  experience,  achieved  in  practice.             Stephen  Taylor   MA  International  Education   University  of  Bath   (@IBiologyStephen)        This  assignment  was  submitted  as  part  of  my  MA  coursework  in  August  2012.  It  is  uploaded  here  to  be  part  of  my  online  professional  development  and  reflection  portfolio  at  is.gd/IBiologyReflections.    
    • Stephen Taylor Curriculum StudiesIntroduction  What  happens  when  an  unstoppable  force  encounters  an  immovable  object?    The  ‘unstoppable  force  paradox’  of  Physics  can  be  used  as  an  analogy  in  education:  as  curriculum   theories   develop   and   our   body   of   understanding   on   how   students   learn  grows,  change  is  inevitable  in  educational  planning  and  implementation.    With  changing  curriculum   comes   the   necessity   to   update   our   practice   as   educators,   to   adapt   to   meet  the   needs   of   our   students   and   to   adjust   the   way   we   teach   in   order   to   meet   the  requirements   of   new   curriculum.   However,   the   unstoppable   force   of   curriculum  development   often   collides   with   the   immovable   object   of   resistance   to   change   and   the  perceived  difficulties  associated  with  adapting  or  re-­‐writing  the  established  syllabus.  As  educators  we  are  agents  of  change:  it  is  our  responsibility  to  facilitate  these  changes  in  a  way   that   will   benefit   our   learners   and   meet   the   aims   and   objectives   of   the   wider  curriculum  model.      The   analogy   of   the   unstoppable   force   paradox   particularly   suits   this   international  school   in   Japan,   with   its   100-­‐year   history   of   academic   success.   The   school   has   been  running  the  International  Baccalaureate’s  Diploma  Programme  (IBDP)  as  a  graduating  qualification  for  students  aged  16-­‐19  for  thirty  years  and  has  traditions  and  academic  systems   –   and   therefore   a   written   curriculum   -­‐   that   are   firmly   established.     However,  the   introduction   of   the   Middle   Years   Programme   (MYP,   students   aged   11-­‐16)   and  Primary   Years   Programme   (PYP,   students   aged   4-­‐11)   are   very   recent.   These   new  curriculum   models,   along   with   changing   leadership,   a   shift   in   the   student   body   and  adapting   to   new   learning   technologies   and   educational   paradigms,   have   thrust   the  school   into   a   period   of   rapid   change.   There   is   tension   between   the   old   and   the   new;  between   the   established   and   the   developing;   and   between   the   ideas   of   curriculum   as  syllabus   and   of   curriculum   as   a   wider,   more   total   learning   experience.   This   tension   is  enhanced   by   the   fact   that   the   MYP   itself   is   undergoing   a   major   review   (IB,   2011a).    Already   existing   as   a   broad   curriculum   framework,   the   resulting   “Next   Chapter”   will  emphasise  further  the  concept-­‐based  nature  of  teaching  and  learning  and  seek  to  better  articulate   the   three   IB   programmes   into   a   continuum   of   learning.   The   MYP   is   evolving  into   a   programme   that   could   be   seen   as   a   ‘greatest   hits’   collection   of   curriculum   theory,  with   diverse   yet   well-­‐known   sources   and   foundations.   At   the   moment   however   there   is  an   atmosphere   of   uncertainty   as   we   await   the   official   publication   of   new   subject   guides  and  documentation  in  2014.     2
    • Stephen Taylor Curriculum StudiesIn   this   assignment   I   aim   to   critically   review   the   current   state   of   a   one-­‐semester   (18-­‐week)  Grade  10  Introductory  Physics  course  as  part  of  the  wider  whole  of  the  MYP.  The  course   is   taught   with   a   partner   teacher   and   is   built   around   a   core   syllabus,   which  reflects  typical  high-­‐school-­‐level  preparatory  Physics  content,  based  loosely  on  National  Science   Education   Standards   (NSES)   from   the   USA   (NSES,   1997).   We   are   adapting   the  course   to   better   meet   the   aims   and   objectives   of   the   MYP,   as   well   as   current   best  practices   in   Physics   instruction   and   preparing   for   the   wide-­‐reaching   curriculum  changes   which   are   to   be   part   of   the   MYP’s   ‘Next   Chapter’.   Appendix   I   features   a  summary   of   the   content,   unit   questions,   enduring   understandings   and   assessed   tasks  for   the   Physics   course.   I   will   build   upon   a   foundation   in   curriculum   theory   to   analyse  the  extent  to  which,  in  my  experience,  the  course  meets  the  needs  of  its  stakeholders,  as  well   as   a   selection   of   the   MYP   sciences   aims   and   objectives   (full   description   in  Appendix  II)  (IB,  2010a):   • “Acquire  scientific  knowledge  and  skills,”     • “Develop  critical,  creative  and  inquiring  minds  that  pose  questions,  solve  problems,   construct   explanations,   judge   arguments   and   make   informed   decisions   in   scientific   and  other  contexts.”   • “Develop   awareness   of   the   moral,   ethical,   social,   economic,   political,   cultural   and   environmental  implications  of  the  practice  of  using  science  and  technology.”  These  aims  have  been  chosen  as  they  represent  apparently  contrasting  approaches  to  curriculum  as  part  of  one  curriculum  model:  the  acquisition  of  knowledge  and  skills  in  contrast   with   a   concept-­‐based   approach   to   application   and   problem-­‐solving;   and   a  content-­‐driven   focus   in   contrast   with   values-­‐based   education.   I   will   give   a   discussion   of  some   issues   in   curriculum   studies   that   are   pertinent   to   these   aims   in   relation   to   our  Physics   course,   before   identifying   strengths   and   weaknesses   and   making   some  recommendations  for  improvements  in  the  next  cycle  of  teaching  and  learning.    In   order   to   achieve   this,   we   must   consider   the   role   of   various   stakeholders   in   the  curriculum   framework   as   a   whole   and   in   our   own   Physics   course.   The   learners   in   the  course   fall   into   two   distinct   categories:   those   who   will   go   on   to   IBDP   Physics   at   a  standard   or   higher   level,   and   therefore   must   be   adequately   prepared;   and   those  students  who  are  terminating  their  Physics  education  upon  completion,  yet  still  need  to  be   prepared   to   study   other   sciences   in   the   IBDP.   The   teachers   who   will   accept   these  students  into  their  IBDP  class  are  under  considerable  time  pressure  to  get  results  in  a   3
    • Stephen Taylor Curriculum Studieshigh-­‐stress   two-­‐year   programme;   they   require   their   students   to   be   well   prepared   in  order   to   allow   them   to   focus   on   preparation   for   largely   content-­‐driven,   high-­‐stakes  terminal   assessment.   In   our   context,   these   are   the   same   teachers   involved   in   delivering  the   MYP   4-­‐5   curriculum,   so   have   the   benefit   of   acting   as   the   bridge   between   the   MYP  and   the   DP.   The   framework   nature   of   the   MYP   allows   for   –   even   requires   -­‐   these  teachers   to   be   fundamentally   involved   in   the   school-­‐based   portion   of   the   curriculum  design   (IB,   2008).   As   a   result,   we   have   a   buy-­‐in   in   what   we   teach,   although   within  parameters  limited  by  the  needs  of  other  stakeholders:  we  are  the  “change-­‐agents  in  the  school,”   (Kelly,   2004,   p.116),   and   the   autonomy   afforded   by   this   should   allow   for   a  research-­‐based   and   iterative   cycle   of   curriculum   improvement.   The   decision   to   move  into  the  MYP  was  taken  a  school  level,  yet  curriculum  is  not  ‘done  to  us’,  we  have  the  power  to  develop  and  improve  the  programme  we  teach.        As  many  of  our  students  apply  to  US  universities,  the  counseling  office  here  at  school,  as  well  as  the  admissions  officers  at  target  universities,  act  as  another  set  of  stakeholders  in  the  course.  Closely  related  to  this  is  the  school  itself,  as  its  reputation,  at  least  to  some  extent,   depends   on   the   academic   success   of   our   students   and   prestige   of   their  destinations   universities.   Alongside   this,   our   programmes   are   audited   by   the   Council   of  International   Schools   (CIS)   and   the   Western   Association   of   Schools   and   Colleges  (WASC);   these   ‘seals   of   approval’   are   seen   as   a   sign   of   our   quality   of   education   and  therefore   an   economic   bargaining   chip   in   the   competition   with   other   international  schools.   Grade   point   averages   (GPA)   are   calculated   from   Grade   9   onwards,   so   the  learning  and  assessment  that  take  place  in  pre-­‐IBDP  years  can  affect  the  outcome  of  a  student’s  applications.      What  is  Curriculum?  In  the  context  of  the  MYP,  curriculum  must  be  understood  to  be  more  than  a  syllabus.      “Many   people   still   equate   a   curriculum   with   a   syllabus   and   thus   limit   their   planning  to  a  consideration  of  the  content  or  the  body  of  knowledge  they  wish  to   transmit…”    (Kelly,  2004,  p.4)    Our   Physics   course   must   therefore   also   fit   as   a   part   of   a   wider   curriculum   whole;   it  should   be   judged   as   more   than   the   addressing   of   discrete   content   or   skills-­‐driven  assessment   statements   and   it   should   facilitate   the   emergent   properties   of   a   more   4
    • Stephen Taylor Curriculum Studiesholistic   curriculum   experience.     In   my   experience   working   alongside   teachers   –  especially   those   who   have   seen   many   iterations   of   curriculum   and   generations   of  students,   teachers   and   school   leadership   –   there   is   a   lingering   misconception   that  “content   is   king”   and   that   changes   to   the   knowledge   items   in   a   course   will   somehow  affect   its   ‘academic   rigour’   or   viability.     Could   this   understanding   be   a   result   of   the  memories  of  educators  and  parents  of  their  own  educational  experiences?  As  educators,  we   consider   ourselves   well   educated   yet   our   memories   of   schooling   may   taint   our  understanding   and   therefore   practice.   We   are   used   to   national-­‐curriculum   style   models  of   education,   which   are   generally   based   on   a   prescribed   syllabus,   set   by   government   or  local   bodies,   based   on   knowledge   that   is   deemed   important   for   all   young   people   to  know.   We   are   used   to   being   asked   “what   did   you   learn   in   school   today?”   rather   than  “what  values  did  you  develop  today?”  but  this  mindset  ignores  the  fact  that  curriculum  is  a   much   wider   experience   for   the   learner,   with   many   facets.   Denis   Lawton   gives   a  concise  description  of  the  connection  between  culture  and  curriculum  here:     “…   the   school   curriculum   (in   the   wider   sense)   is   essentially   a   selection   from   the   culture   of   a   society.   Certain   aspects   of   our   way   of   life,   certain  kinds   of   knowledge,  certain  attitudes  and  values  are  regarded  so  important  that  their   transmission   to   the   next   generation   is   not   left   to   chance   in   society   but   is   entrusted   to   specially-­‐trained   professionals   (teachers)   in   elaborate   and   expensive  institutions  (schools).“  (Lawton,  1975)  (emphasis  mine)      He   suggests   that   the   curriculum   represents   a   portion   or   snapshot   of   a   culture   that   is  deemed   important   enough   to   be   expressly   articulated   and   purposefully   passed   on   to  students.   To   me   the   content-­‐driven   dogma   of   traditional   curriculum   reflects   a  knowledge-­‐as-­‐power  mindset:  “Productive  power  is  [then]  fundamentally  concerned  with  disciplinary   knowledge.”   (Scott,   2008,   p.53).   With   a   system   of   education   geared   towards  university  entry,  we  experience  considerable  content  and  assessment  backwash,  which  flows  beyond  the  IB  Diploma  into  the  MYP,  as  we  need  to  ensure  students  are  prepared  in  order  to  achieve  highly  and  be  competitive  applicants.  But  this  also  puts  power  in  the  hands   of   the   more   traditional   teachers   and   curriculum   developers,   whose   rebuttal   of  change  is  frequently  the  need  to  be  competitive.  To  some,  the  move  into  the  MYP  is  seen  as   a   ‘power-­‐coercive’   approach   to   curriculum   development,   where   an   ‘empirical-­‐rational’  strategy  might  be  needed  to  ensure  the  success  of  the  programme  (Kelly,  2004,  p.111).   This   aligns   with   the   first,   and   to   some   extent   the   second,   of   the   MYP   sciences  aims   that   I   identified   in   the   introduction.   Our   course   could   not   be   judged   a   success   –   5
    • Stephen Taylor Curriculum Studiesparticulary   in   the   eyes   of   those   resistant   to   change   –   if   it   does   not   deliver   on   content  knowledge,  skills  and  preparation  for  the  IB  Diploma.      However,  culture  changes  over  time,  and  thus  so  must  the  curriculum.  Further  to  kinds  of  knowledge  are  attitudes  and  values.  It  might  be  comforting  to  teachers  and  students  (and  examining  bodies)  to  be  able  to  boil  the  outcomes  of  student  learning  down  into  discrete  assessed  bites  of  knowledge  that  can  be  checked  off  a  list  and  examined  using  reliable   mass-­‐scale   methods   such   as   standardized   tests,   but   the   curriculum-­‐is-­‐syllabus  view   fails   to   consider   the   myriad   elements   of   curriculum   that   really   exist.   The   total  curriculum   (Kelly,   2004,   p.5)   represents   a   more   holistic   view   of   the   teaching   and  learning   that   goes   on   within   (and   without)   our   school   walls.   This   includes   the   overt,  planned,   formal   and   assessed   curricula   –   the   intended   and   documented   learning   and  assessment  experiences  that  are  the  ‘targets’  of  the  learning  and  take  place  during  the  school   day.   However,   it   also   includes   the   implicit,   received,   hidden   and   informal  curricula  –  those  learning  experiences  that  may  not  be  formally  documented  as  part  of  scheduled   classes.   They   may   arise   as   a   result   of   the   school   ethos,   or   a   teacher’s  interaction  with  a  student  beyond  the  content  of  the  course.  They  are  more  likely  to  be  attitudinal  and  values-­‐related,  yet  they  also  incorporate  the  element  of  just-­‐in-­‐time  (or  ancillary)  learning  as  students  pick  up  new  knowledge  and  skills  in  order  to  complete  a  set  task  or  negotiate  a  social  situation.   For  example  in  our  Physics  class  students  might  be   required   to   develop   methods   of   collecting   and   analyzing   data   to   describe   the   motion  of   the   local   train   (Appendix   I),   but   could   additionally   be   developing   knowledge   and  skills   regarding   the   use   of   new   tools   and   software   packages.   Regardless   of   what   is  written   on   official   school   planning   documents,   students   are   likely   to   be   always   learning  –   for   the   better   or   worse   –   and   a   total   curriculum   view   recognizes   and   aims   to   plan   and  account  for  this  (Kelly,  2004,  p.5).          In  an  interesting  contrast  with  equivalent  secondary  educational  programmes  (such  as  the  English  General  Certificates  in  Secondary  Education,  or  GCSE’s),  the  MYP  does  not  have   a   prescribed   syllabus.   In   fact,   the   specific   content   of   a   course   is   left   up   to   those  responsible  for  developing  the  school’s  own  curriculum,  which  may  or  may  not  be  the  classroom   teachers   (IB,   2009).   It   is   a   curriculum   framework,   driven   by   a   clearly-­‐defined  philosophy  through  the  IB’s  Mission  Statement:       6
    • Stephen Taylor Curriculum Studies “The   International   Baccalaureate   aims   to   develop   inquiring,   knowledgeable   and  caring  young  people  who  help  to  create  a  better  and  more  peaceful  world   through  intercultural  understanding  and  respect.   To   this   end   the   organization   works   with   schools,   governments   and   international   organizations   to   develop   challenging   programmes   of   international  education  and  rigorous  assessment.   These   programmes   encourage   students   across   the   world   to   become   active,   compassionate   and   lifelong   learners   who   understand   that   other   people,   with   their  differences,  can  also  be  right”.  (IB,  2012a)  (emphasis  mine)    As  this  assignment  is  focused  on  the  MYP  I  should  draw  attention  to  and  build  upon  the  IB’s  definitions  of  curriculum  through  this  assignment  (IB,  2008,  p.17):      “The   MYP   comprises   a   composite   curriculum   model   (fig.   1)   where   each   component   has   equal   value.   […]   Double-­‐headed   arrows   indicate   that   developing,   implementing   and   monitoring   the   school’s   written,   assessed   and   taught   curriculum   is   an   integrated   process   whereby   each   component   informs   the   other   two.”     Figure  1:  The  curriculum  model.  (IB,  2008)    With   the   emphasis   on   developing   the   learner   rather   than   transmitting   a   certain   set   of  knowledge,   the   continuum   of   the   IB’s   programmes   better   represent   Kelly’s   idea   of   a  total  curriculum.  The  framework  model  pushes  the  aims  of  the  MYP  in  their  mission  and  subject-­‐specific   guides,   yet   allows   for   freedom   of   content-­‐based   planning;   this   can   be  used   to   ensure   national   or   state   ‘standards’   are   met,   or   students   are   prepared   for   other  external  examinations  and  qualifications.      Whose  culture,  whose  curriculum?  The  MYP  is  currently  offered  in  over  900  schools  across  the  globe  (IB,  2012b).  If  we  are  to  think  of  the  curriculum  as  a  selection  of  a  culture,  or  the  “features  which  produce  the  school’s  ethos”  (Marsh,  2009,  p.9),  then  this  could  offer  a  real  challenge  for  the  IB;  how  could   an   international   organization   with   European   origins   claim   to   represent   the  cultures   of   all   of   its   diverse   schools?   If   the   IB   were   to,   as   Lawton   (1975)   suggests,  analyse  the  culture  from  which  they  were  to  take  a  selection  for  the  curriculum,  it  would  be  an  insurmountable  task;  whose  culture  would  result  and  whose  curriculum  would  it   7
    • Stephen Taylor Curriculum Studiesrepresent?   Although   it   could   be   perceived   that   an   IB   education   represents   a   Euro-­‐centric  world-­‐view  (Coates  et  al.,  2007),  the  curriculum  framework  model,  rather  than  a  prescribed  syllabus,  should  facilitate  global  flexibility  in  a  schools  curriculum  planning  and  assessment.  The  MYP  has  clear  philosophical  goals,  based  on  the  IB’s  mission  and  underpinned  by  the  Learner  Profile,  yet  refrains  from  dictating  content  for  the  courses  that  are  offered  in  its  schools.  Schools  must  apply  to  the  IB  for  authorization  to  run  their  programmes,  during  which  process  they  outline  how  they  will  meet  the  standards  and  practices  of  the  IB  programme  to  which  they  are  applying  (IB,  2012c).      Therefore   I   would   argue   that   by   buying   into   the   IB’s   programmes,   schools   are   to   the  greater   extent   choosing   the   culture   of   the   IB   and   its   interpretation   of   the   values   of  internationalism  it  represents;  an  IB  education  and  its  core  philosophy  could  be  seen  as  a  commodity  or  a  product  of  economic  globalization  (Cambridge  &  Thompson,  2004).  In  measuring  the  success  of  our  Intro  Physics  course,  I  suggest  that  it  should  exemplify  the  values   of   both   internationalism   and   globalization.   From   the   perspective   of  internationalism   it   should   “embrace   a   progressive   existential   and   experiential  educational   philosophy   that   values   the   moral   development   of   the   individual   and  recognizes  the  importance  of  service  to  the  community  and  the  development  of  a  sense  of  responsible  citizenship.”  (Cambridge  &  Thompson,  2004)  In  terms  of  the  globalist  view,  it   should   “facilitate   educational   continuity   for   the   children   of   the   globally   mobile  clientele,”   as   well   as   “for   the   children   of   the   host   country   clientele   with   aspirations  towards  social  and  global  mobility.”  (Cambridge  &  Thompson,  2004).  Our  Physics  class  in   essence   then   should   be   values-­‐based   yet   internationally   recognizable;   it   should  promote   international   ideals   of   peace   and   cooperation   yet   remain   identifiable   as   a   high  school  standard  of  academic  rigour.    From  a  content-­‐based  perspective,  it  is  perhaps  a  globalist   product,   transferable   as   a   university   entry   requirement.   The   elements   of  internationalism   align   with   the   third   of   the   MYP   sciences   aims   I   identified   in   the  introduction,   so   to   judge   the   course   ‘successful’,   these   would   need   to   be   an   overt   and  integral  part  of  the  educational  experience  in  the  Physics  class.      Ostensibly,  our  choice  of  the  NSES  standards  to  some  extent  makes  the  Physics  course  representative  of  the  academic  culture  of  the  USA;  within  the  international  framework  of   the   IB   MYP   we   have   chosen   to   use   a   set   of   standards   that   are   recommended   for  schools  in  the  United  States.  The  intention  here  is  to  ensure  our  course  is  recognizable   8
    • Stephen Taylor Curriculum Studiesto   university   admissions   offices,   yet   we   may   have   unintentionally   introduced   tension  between  the  aims  of  the  programme.  I  will  explore  this  further  in  the  final  analysis  of  the  Physics  course.      The  MYP  as  a  curriculum  framework  As   a   learner-­‐centred   total   curriculum   framework   constructed   from   a   philosophy   first  perspective,   the   development   of   the   MYP   could   be   seen   as   a   way   of   drawing   together  the   most   current   and   relevant   ideals   of   curriculum   theory.   A   full   description   of   the  current   MYP   model   is   included   in   Appendix   III.   Documentation   provided   by   the   IB   is  abundant   and   diverse,   including   guides,   principles   to   practice   and   recent   position  papers   on   the   continuum   of   education,   holistic   education   and   culture   (all   2010)   and  concept-­‐based   education   (Erickson,   2012).   Within   each   subject   guide   we   see   the  influence   of   curriculum   theorists.   Where   syllabus-­‐based   curricula   tend   towards   the  objectives-­‐based   model   of   WJ   Popham   (Scott,   2008,   p.21),   this   was   criticized   by  Lawrence  Stenhouse: “…Trivial   learning   behaviours   may   be   prioritised   at   the   expense   of   more   important   outcomes   because   they   are   easier   to   operationalize.”   Stenhouse   1975  in  (Scott,  2008,  p.27)    And:   “A  behavioural  objectives  model  that  is  underpinned  by  a  taxonomic  analysis   of  knowledge  content  does  not  take  account  of  pedagogical  knowledge  or  the   way  students  learn.”  (Scott,  2008,  p.28)    Furthermore:   “Stenhouse   argues   that   the   teacher   should   be   concerned   not   only   with   students’   behavioural   changes,   but   also   with   wider   issues   such   as   the   ethical   dimension   of   their   behaviour,   unexpected   outcomes   of   adopting   a   rigid   behavioural  objectives  regime,  and  the  consequences  of  their  behaviour  on   other   stakeholders   such   as   parents.   This   argument   assumes   that   ends   and   means  can  be  clearly  separated,  and  that  the  efficient  delivery  of  behavioural   objectives   can   be   achieved   without   the   teacher   paying   any   attention   to   unexpected  consequences”.  (Scott,  2008,  p.28)  (emphasis  mine)    The   MYP   has   leaned   more   towards   Stenhouse’s   process-­‐based   model,   including  emphasizing   the   role   of   self-­‐assessment   in   student   work   (though   the   teacher   remains  the  final  assessor).  “Ethical  dimensions  of  their  behavior…”  fits  with  the  Learner  Profile  and   “…wider   issues…”   are   the   fundamental   basis   for   the   Areas   of   Interaction.   The  process-­‐based  model  would  seem  to  fit  more  comfortably  with  the  holistic  aims  of  the   9
    • Stephen Taylor Curriculum Studies MYP,  yet  the  IB  have  drawn  on  more  than  this  in  their  design  and  development  of  the   programme.         The   programme   becomes   further   removed   from   the   discrete   knowledge   items   of   a   syllabus-­‐driven   system   with   the   new   emphasis   on   concept-­‐based   curriculum.   In   this   model   (fig.   2),   Erickson   (2008   &   2012)  argues  that  the  two-­‐dimensional  topic  or  skills   based   model   focuses   “…   on   facts   and   skills   with   the   goals   of   content   coverage,   and   the   memorization   of   information”   (Erickson,   2012).   On   the   other   hand,   she  argues  that:         “Three-­‐dimensional   models   focus   on   concepts,   principles   and   generalizations,   using   related   facts   and   skills   as   tools   to   gain   deeper   understanding   of  Figure  2:  2D  and  3D  instructional  models  (Erickson,  2008),  used  in  (Erickson,  2012)   disciplinary   content,   transdisciplinary   themes   and   interdisciplinary  issues,  and  to  facilitate  conceptual   transfer   through   time,   across   cultures   and   across   situations.”       The   introduction   of   the   MYP   to   this   school,   along   with   the   impending   changes   to   the   MYP  as  a  whole,  have  necessitated  a  change  in  the  way  teaching  and  learning  take  place   in   the   high   school:   the   move   from   2D   to   3D   instruction   requires   some   fundamental   shifts   in   curriculum   planning   and   classroom   pedagogy.   Many   of   these   represent   a   tension   in   the   way   high-­‐school   sciences   in   have   been   traditionally   taught,   and   thus   highlight   some   of   the   areas   for   development   in   our   Physics   class.   Despite   this,   curriculum   review   cycle   changes   on   the   horizon   for   IB   Diploma   sciences   do   not   –   in   my   view  -­‐  represent  a  significant  shift  into  the  realm  of  three-­‐dimensional  instruction.  The   assessment   model   remains   as   a   content-­‐driven   high-­‐stakes   terminal   examination   model;  the  weighting  of  exams  to  practical  work  shifting  from  76%:  24%  to  80%:  20%   (IB,   2012d).   In   essence,   the   methods   perceived   to   be   required   for   success   in   the   IB   Diploma  science  better  fit  with  the  two-­‐dimensional  model,  whereas  the  sea  change  in   curriculum  and  pedagogy  in  the  MYP  is  heading  towards  the  three-­‐dimensional  model.   For   our   course   to   be   successful   in   the   aims   of   the   MYP   as   well   as   act   as   a   solid   10
    • Stephen Taylor Curriculum Studiespreparation   for   the   Diploma   Programme,   these   tensions   between   traditional   two-­‐dimensional   and   concept-­‐based   three-­‐dimensional   instruction   must   be   overcome  effectively,  in  particular  these  selected  tensions  identified  by  Erickson:     Two-­‐dimensional  instruction   Three-­‐dimensional  instruction   Goal   is   increased   factual   knowledge   and   Goal   is   increased   conceptual   understanding   skill  development.     supported  by  factual  knowledge  and  skills.     Assessment  of  factual  knowledge  and  skills.   Assessment   of   conceptual   understanding   ties   back  to  a  central  idea.   Instruction   relies   on   lecture   and   Instruction  is  student-­‐led  and  inquiry-­‐driven.     information-­‐dissemination  to  students.     Focus  on  content  (syllabus)  coverage.     Focus  on  student  understanding  and  thinking.    Selected   from   a   summary   table   of   Erickson’s   views   of   two-­‐dimensional   versus   three-­‐dimensional  instruction,  included  in  Appendix  II.  (Erickson,  2012)(Emphasis  mine)    Judging  the  success  of  the  Intro  Physics  course  Our   Physics   course   is   therefore   in   a   challenging   position,   as   it   must   perform   multiple  roles  and  satisfy  the  needs  of  myriad  stakeholders.  It  acts  as  a  preparatory  course  for  students   entering   DP   Physics;   as   a   final   course   for   students   who   may   never   study  Physics   again;   as   preparation   for   IBDP   internal   assessments;   and   as   part   of   the   wider  MYP   at   our   school.   It   survives   in   a   semester   of   tension,   as   students   make   choices   for  their   Diploma   Programme   subjects   while   coming   to   the   end   of   their   MYP   experience.  The   sciences   also   experience   a   jarring   transition   from   MYP   to   DP.   In   the   current   model,  one-­‐sixth   of   sciences   assessment   in   the   MYP   is   potentially   exam-­‐focused,   generally  achieved  with  unit  tests;  this  shifts  to  76%  of  assessment  in  a  series  of  three  terminal  exams   after   two   years   in   the   Diploma   Programme.   There   is   a   significant   weight   of  responsibility   on   the   MYP   teachers   to   help   their   students   succeed   in   the   high-­‐stakes  Diploma  Programme  by  giving  them  sufficiently  ‘rigorous’  preparation.      This  responsibility  to  prepare  students  for  the  IB  Diploma  ties  closely  with  the  first  of  the  aims  on  the  MYP  sciences  I  have  identified  to  discuss:  “Acquire  scientific  knowledge  and   skills”   (IB,   2010a).   In   this   respect,   I   would   consider   the   course   to   be   largely  successful.   From   the   perspective   of   the   IBDP   Physics   teacher,   students   are   able   to   be  successful   in   his   class.     The   content   of   the   course   is   based   on   recognized   ‘traditional’  Newtonian  physics  as  outlined  in  the  NSES  standards  and  which  also  feed  into  the  IB  DP  Physics   course.   It   fits   a   logical   progression   of   Physics-­‐based   learning   (Kibble,   1998,   11
    • Stephen Taylor Curriculum Studiesp.99).  The  articulation  of  this  content  and  the  use  of  defined  command  terms  fits  more  in   line   with   Popham’s   objectives-­‐based   model   –   discrete,   unambiguously-­‐stated   and  descriptive   performance   outcomes   (Ross,   2000,   p.21)     -­‐   and   prepares   students   to   use  the  language  of  assessment  in  the  IBDP  sciences  courses.  Examples  of  defined  command  terms  are  included  in  Appendix  V.      However,   I   would   argue   that   the   volume   of   content   defined   in   the   course   is   too   great   to  be  covered  in  a  semester  and  at  the  same  time  meet  all  the  others  aims  of  our  course  as  part   of   the   wider   MYP   model.   This   in   agreement   with   the   findings   of   Schmidt   et   al  (2005)   in   their   exploration   of   data   from   the   Third   International   Mathematics   and  Science   Study   (TIMSS),   in   which   student   achievement   and   curriculum   standards   are  compared  between  the  US  and  other  countries.  They  found  that  countries  with  higher-­‐achieving   students   have   more   coherent,   less   bloated   curricula,   with   the   US   curricula  more   prone   to   becoming   a   ‘shopping   list’   of   content   to   cover   in   an   aim   to   appear  ‘rigorous’   (Schmidt   et   al.,   2005).   I   propose   that   it   would   be   wise   for   us   to   look   carefully  at   the   level   of   content   included   in   the   course   and   aim   to   bring   this   more   in   line   with  countries   that   typically   rank   more   highly   than   the   US.   This   may   serve   a   secondary  purpose   of   adding   a   more   authentic   element   of   ‘internationalism’   to   our   curriculum,  whilst  modeling  the  skills  and  content  of  more  highly-­‐achieving  countries.      The   first   aim   requires   students   to   develop   scientific   skills   as   well   as   knowledge,  referring   to   the   ability   to   design   and   implement   scientific   investigations,   collect   and  analyse  data  and  draw  conclusions  and  evaluations.  In  my  experience,  I  see  our  course  as   being   particularly   successful.   It   is   largely   based   in   practical   investigation,   modeling  and   data   analysis.   Descriptors   of   three   of   the   assessment   criteria,   Knowledge   and  understanding   in   Science,   Scientific   inquiry   and   Data   processing   (see   appendix   II),   are  universal   in   the   MYP   sciences,   as   are   the   assessment   criteria   of   the   various   scientific  disciplines   of   he   IB   Diploma.   As   a   result,   skills   developed   in   the   Physics   course   are  transferable  and  allow  students  to  be  successful  in  the  IB  Diploma,  whether  they  study  Physics,  Chemistry  or  Biology.  The  assessment  criteria  also  emphasize  the  importance  of  critical  inquiry  and  analysis  of  data  and  ideas  over  simple  memorization.  This  leads  into  the  second  of  the  aims,  to  “…  develop  critical,  creative  and  inquiring  minds  that  pose  questions,   solve   problems,   construct   explanations,   judge   arguments   and   make   informed  decisions   in   scientific   and   other   contexts”   (IB,   2010a)   Although   students   are   generally   12
    • Stephen Taylor Curriculum Studiesable   to   meet   these   descriptors   with   support,   it   highlights   an   area   for   improvement   in  our  course  design  and  implementation.  It  is  quite  a  linear  course,  following  a  traditional  ‘Newtonian’  pathway  with  set  assessment  tasks.  Although  instruction  generally  follows  Erickson’s   three-­‐dimensional   model,   there   is   significant   scope   for   improvement   or  adjustment   and   I   feel   that   there   is   potential   to   open   up   the   choices   of   topics   and  assessments  to  students  yet  retain  the  core  philosophy  of  concept-­‐based  learning.  In  an  attempt  to  cover  the  content,  we  are  conforming  to  Popham’s  model,  where  we  perhaps  should  be  exploring  more  open  models  such  as  suggested  by  Erickson.      The   final   aim   of   the   MYP   sciences   I   have   chosen   to   identify   is   to   “…develop   awareness   of  the  moral,  ethical,  social,  economic,  political,  cultural  and  environmental  implications  of  the   practice   of   using   science   and   technology”   (IB,   2010a).   In   this   respect   the   MYP   as   a  whole   and   our   physics   course   within   are,   in   my   experience,   very   successful.   Sciences  assessment   criterion   A:   One   World   is   designed   in   such   a   way   that   students   are   required  to  address  the  implications  stated  above  in  their  discussion  and  analysis  of  the  use  of  science.    I  see  the  One  World  criterion  as  one  example  of  the  IB’s  development  of  a  total  curriculum,  encompassing  values  education  and  internationalism,  which  lies  in  contrast  to   other,   less   holistic   programmes   such   as   content-­‐driven   iGCSE’s   or   Advanced  Placement   (AP)   courses.     This   criterion   is   assessed   throughout   the   course,   with  students   engaging   in   a   community   project   (speeding   drivers)   and   research   on   the  applications   of   science   in   the   global   context   (safety   in   sudden   accelerations   and  sustainable  energy  issues).  Furthermore,  we  take  care  to  connect  the  One  World  issues  of   science   with   the   content   being   studied   at   any   given   time   –   to   try   to   ensure   that  students   see   science   as   something   that   is   key   to   solutions   to   local   and   global   issues  rather   than   a   discrete   academic   discipline   that   is   reduced   to   a   simple   set   of   assessment  statements.   However,   some   students   still   perceive   the   course   in   this   light,   and   the  cultural  relevance  of  science  is  an  area  for  improvement  in  the  design  and  delivery  of  our  programme.      Strengthening  the  course  Curriculum  is  always  in  flux,  just  as  culture  is  always  changing.  Our  course  does  fulfill  its  role  as  an  adequate  preparation  for  the  high-­‐stakes  IB  Diploma  Programme  and  we  make  a  concerted  effort  to  bring  in  elements  of  internationalism,  concept-­‐based  learning  and  the  moral,  ethical  and  social  implications  of  science  in  the  global  context.     13
    • Stephen Taylor Curriculum StudiesThe  course  could  also  be  judged  against  Stenhouse’s  definition  of  curriculum  (1975,  p4)  as  "…an  attempt  to  communicate  the  essential  principles  and  features  of  an  educational  proposal  in  such  a  form  that  it  is  open  to  critical  scrutiny  and  capable  of  effective  translation  into  practice."  I  would  argue  that  our  course  meets  the  definition  put  forward  by  Stenhouse  in  that  it  is  well  articulated  in  a  public  form  (website,  curriculum  documents),  and  is  scrutinized  by  teachers  and  coordinators  on  an  annual  basis.  My  teaching  partner  and  I  frequently  analyse  the  content  and  assessment  of  the  course,  in  order  to  make  sure  it  is  meeting  the  aims  that  have  been  set  and  it  has  evolved  a  long  way  from  its  origins  as  a  simple  content-­‐driven  syllabus  in  the  days  before  the  school  had  the  MYP.  In  documenting  our  curriculum  and  reviewing  it  on  a  regular  basis,  we  are  increasing  our  ability  to  put  the  wider  aims  of  the  MYP  into  practice  and  I  feel  that  the  course  and  the  educational  experience  of  the  students  is  improving  as  a  whole.      The  freedom  we  have  to  design  the  content,  learning  experiences  and  assessment  tasks  withing  the  MYP  sciences  framework  is  a  further  strength  of  the  programme.  Although  the  initial  introduction  of  the  MYP  to  the  school  (and  to  a  lesser  extent  curriculum  updates  from  the  IB)  may  have  been  seen  by  some  teachers  as  a  ‘power-­‐coercive’  strategy  to  impose  curriculum  on  teachers  (Kelly,  2004,  p.111),  my  strong  feeling  is  that  we  are  in  a  much  more  ‘normative-­‐reeducative’  phase  of  the  MYP  in  our  school.  There  is  abundant  professional  development  and  we  have  significant  autonomy  on  the  development  and  implementation  of  curriculum  in  our  courses  –  we  are  the  “change  agents”  with  the  IB  acting  as  our  “outside  support  agency”  (Kelly,  2004,  p.116).  This  environment  therefore  will  allow  us  to  take  action  on  some  of  the  areas  for  improvement  identified  in  this  essay,  in  order  to  strengthen  the  course.      As  a  first  recommendation,  I  feel  strongly  that  we  should  reduce  the  ‘shopping  list’  as  it  is  too  much  to  carry  as  well  as  doing  the  aims  of  the  MYP  sciences  justice.  Although  discrete  knowledge  and  understanding  items  are  clearly  defined  in  terms  of  their  outcomes  (see  appendix  I),  students  find  them  useful  and  they  are  in  line  with  the  assessment  statements  of  the  IB  Diploma  Physics  syllabus,  the  volume  of  content  leads  into  a  prescriptive  course  with  little  room  for  genuine  inquiry  in  the  short  semester  allotted.  With  the  evolution  of  the  MYP  into  a  concept-­‐based  model,  I  feel  that  we  can  allow  for  greater  student-­‐led  inquiry  under  the  same  key  concepts.  For  instance,  the  first  unit  question  of  “How  do  we  describe  change?”  could  easily  be  applied  to  other   14
    • Stephen Taylor Curriculum Studieselements  of  Physics,  such  as  light  and  sound,  tapping  into  students’  interests  in  a  more  authentic  manner.  Furthermore,  a  reduced  content  load  would  allow  for  greater  time  spent  on  scientific  investigation,  developing  key  skills  in  experimental  design,  data  processing,  analysis  and  evaluation  that  are  fundamental  for  success  in  all  of  the  IB  Diploma  sciences,  not  just  physics.      Reducing  the  volume  of  discrete  content  components  would  weaken  the  framing  of  the  course,  giving  the  teachers  and  students  more  control  of  the  direction  of  inquiries,  as  described  by  Bernstein  (Ross,  2000,  p.77).  As  a  result,  it  will  allow  us  to  further  develop  the  pedagogy  of  the  course,  moving  from  the  two-­‐dimensional  model  of  content-­‐driven  teaching  into  the  three-­‐dimensional  model  of  concept-­‐based  learning  (Erickson,  2012).  I  would  hope  also  that  it  would  allow  the  course  to  be  more  culturally  relevant  to  our  students,  giving  opportunities  to  adapt  content  to  suit  their  own  needs,  personal  backgrounds  and  potential  university  destinations.  Through  making  these  changes,  I  would  hope  to  see  a  greater  level  of  student  engagement  in  active,  self-­‐directed  learning,  without  sacrificing  ‘academic  rigour’  or  producing  learners  who  are  under-­‐prepared  for  the  challenges  of  the  IB  Diploma.      My  final  recommendation  is  more  personal,  yet  pertinent  to  this  course.  As  MYP  Coordinator  I  am  the  “change-­‐agent”  for  the  MYP  in  our  school,  yet  I  am  keen  to  push  this  into  a  greater  role  as  an  action-­‐researcher  (Kelly,  2004,  p.118).  In  doing  so,  I  would  hope  to  establish  a  culture  of  critical  inquiry  on  curriculum  issues  in  our  school,  in  particular  with  regard  to  “…the  planning,  design,  and  organization  of  curriculum  including  attention  to  matters  of  content  selection  and  emphasizing  scientific  and  epistemiological  issues  in  the  selection  of  school  curriculum  content.”  (Pinar, 2003, p.7).This is starting to get underway under our new leadership, with teachers looking at data-driven student learning goals, and I would like it to develop into a deeper culture ofevidence-based and forward-thinking attention to curriculum across the school.    Globalisation  and  the  evolution  of  culture  -­‐  and  therefore  curriculum  -­‐  may  be  unstoppable  forces,  but  our  teaching  does  not  need  to  be  an  immovable  object.       15
    • Stephen Taylor Curriculum Studies   ReferencesCambridge, J. & Thompson, J., 2004. Internationalism and globalization as contexts forinternational education. Compare: A Journal of Comparative and International Education,32(4), pp.161-75.Coates, H., Rosicka, C. & MacMahon-Ball, M., 2007. Perceptions of the InternationalBaccalaureate Diploma Programme among Australian and New Zealand Universities.ACER.Erickson, H.L., 2008. Stirring the Head, Heart and Soul: Redefining curriculum, instructionand concept-based learning.. Third. ed. Thousand Oaks, California, USA: Corwin Press.Erickson, H.L., 2012. Concept-based teaching and learning (pdf). [Online] InternationalBaccalaureate Organization Available at:http://blogs.ibo.org/positionpapers/2012/07/12/concept-based-teaching-and-learning/[Accessed 18 July 2012].IB, 2008. MYP: From principles to practice [Note: Password protected]. Cardiff, UK:International Baccalaureate Organisation. Available at: http://ibo.org [accessed 18 October2011].IB, 2009. The Middle Years Programme: A basis for practice (pdf). Cardiff, UK:International Baccaluareate Organisation. Available at: http://occ.ibo.org [accessed 4January 2012].IB, 2010a. MYP Coordinators Handbook (pdf). Cardiff, UK: International BaccalaureateOrganisation. Available at: http://occ.ibo.org/ [accessed 4 January 2012].IB, 2010a. MYP: Sciences guide. For use from January 2011. Cardiff, UK: InternationalBaccaluareate Organisation. Available at: http://occ.ibo.org [accessed 30 January 2011].IB, 2010c. Command terms in the MYP. Cardiff, UK: International BaccalaureateOrganisation.IB, 2011a. MYP Statistical Bulletin, November 2011 moderation session (pdf) [Note:password protected]. [Online] Available at:http://www.ibo.org/facts/statbulletin/mypstats/index.cfm [Accessed 12 February 2012].IB, 2011a. MYP: the next chapter. Project report October 2011. [Online] Available at:http://occ.ibo.org [Accessed 25 November 2011].IB, 2011. Development Report: MYP Sciences guide (pdf). [Online] Available at:http://occ.ibo.org [Accessed 5 November 2011].IB, 2012a. Mission and strategy. [Online] Available at: http://www.ibo.org/mission/[Accessed 20 July 2012].IB, 2012b. School Statistics. [Online] Available at:http://www.ibo.org/facts/schoolstats/progsbycountry.cfm [Accessed 21 June 2012]. 16
    • Stephen Taylor Curriculum StudiesIB, 2012c. How to become an International Baccalaureate® World School. [Online]Available at: http://www.ibo.org/become/index.cfm [Accessed 30 July 2012].IB, 2012d. Curriculum review report: Physics (pdf). [Online] Available at: http://ibo.org[Accessed 23 June 2012d].IB, 2012. IB Fast Facts. [Online] Available at: http://www.ibo.org/facts/fastfacts/ [Accessed20 February 2012].Kelly, A.V., 2004. The Curriculum: Theory and Practice. [online]. SAGE Publications.Available from: http://lib.myilibrary.com?ID=37096. Accessed19 June 2012.Kibble, B., 1998. Forces.. In M. Ratcliffe, ed. ASE Guide to Secondary Science Education.Cheltenham: Stanley Thornes.Lawton, D., 1975. Class, Culture and the Curriculum. [online]. Routledge & Kegan PaulLtd.Marsh, C.J., 2009. Key Concepts for Understanding Curriculum. Teachers Library Series.[online]. 4th ed. Taylor & Francis. Available from: http://lib.myilibrary.com?ID=208487.[Accessed 19 June 2012].Nicolson, M. & Hannah, L., 2010. History of the Middle Years Programme (pdf). [Online]Available at: http://occ.ibo.org [Accessed 14 February 2012].NSES, 1997. Science Content Standards. [Online] National Academies Press, USA.Available at: http://www.nap.edu/openbook.php?record_id=4962&page=103 [Accessed 20July 2012].Pinar, W.F., 2003. International Handbook of Curriculum Research. [online]. LawrenceErlbaum Associates, Inc. Available from:http://www.questiaschool.com/PM.qst?a=o&d=104616065#. [Accessed 19 June 2012].Ross, A., 2000. Curriculum: Construction and Critique. [online]. Taylor & Francis.Available from: http://lib.myilibrary.com?ID=2011. [Accessed 19 June 2012].Schmidt, W.H., Wang, H.C. & McKnight, C.C., 2005. Curriculum coherence: anexamination of US mathematics and science content standards from an internationalperspective. Journal of Curriculum Studies, 37(5), pp.525-59.Scott, D., 2008. Critical Essays on Major Curriculum Theorists. [online]. Taylor & Francis.Available from: http://lib.myilibrary.com?ID=94328. Accessed 18 June 2012.Stenhouse, L., 1975. An introduction to curriculum research and development. London:Heinemann.   17
    • Stephen Taylor Curriculum Studies Appendices    Appendix  I:  Summary  course  of  our  Grade  10  Intro  Physics  course  [Selected  from  our  ATLAS  rubicon,  based  on  MYP  Unit  Planners]    Unit  1:  Describing  Motion  (kinematics)  Unit  Question   Selected  Assessment  Statements  (content)  How  can  we  describe  change?   • Distinguish  between  scalars  and  vectors.  Enduring  Understanding(s)   • Distinguish  between  distance  and  displacement.   • Describe  displacement  of  an  object  using  components  Change  can  be  communicated  using   (coordinates),  magnitude  and  direction  and  directed  line  descriptions,  graphical   segment  vector  diagrams.  representations  and  quantities.     • Describe  motion  of  an  object  in  a  given  direction  based  on   positive  and  negative  displacement.   • Calculate  distance  and  displacement  from  a  map.   • Plot  distance  and  displacement  graphs  from  raw  data  or  a   strobe  diagram   • Distinguish   between  instantaneous  and  average  speed/velocity.     • Calculate  average  speed  and  velocity  from  a  displacement-­‐ time  graph  or  set  of  recorded  data.   • Draw  and  analyze  vector  diagrams  to  show  velocity   (magnitude  and  direction)Summative  assessment  tasks  Criterion  A:  One  World   Community  speeding  driver  project  Criterion  B:  Communication  in  Science   Describing  motion  of  Olympic  sprinters  Criterion  C:  Knowledge  &  Understanding   Unit  test,  criterion-­‐graded.    Criterion  D:  Scientific  Inquiry   Design  a  method  to  measure  and  communicate  the  Criterion  E:  Processing  Data   motion  of  the  Rokko  Liner  train.    Criterion  F:  Attitudes  in  Science   Self,  peer  and  teacher-­‐assessed  in  lab  work.      Unit  2:  Forces  and  Motion  Unit  Question   Selected  Assessment  Statements  (content)  How  do  interactions  cause  change?   • State  that  forces  cause  change  in  shape  and/or  change  in   motion  Enduring  Understanding(s)   • Describe  the  common  forces  Change  is  the  result  of  unbalanced  net   • Explain  how  the  magnitude    of  a  force  can  be  measured  force.     • Calculate  the  weight  of  an  object  on  Earth  from  its  mass   • State  Newtons  first  law  of  Motion:  Inertia   • Draw  free  body  diagrams   • State  Newtons  second  law  of  motion:  Acceleration   • Define  net  force     • Distinguish  between  balanced  forces  (equiibrium)  and   unbalanced  forces  on  an  object   • Explain  the  effect  of  balanced  or  unbalanced  forces  on  an   objectSummative  assessment  tasks  Criterion  A:  One  World   Article:  dangers  of  sudden  acceleration,  topics  Criterion  B:  Communication  in  Science   based  on  student  interest.    Criterion  C:  Knowledge  &  Understanding   Unit  test,  criterion-­‐graded.  Criterion  D:  Scientific  Inquiry   Can  a  regular  spring  be  used  to  measure  force?  Criterion  E:  Processing  Data   Student-­‐designed  investigation.    Criterion  F:  Attitudes  in  Science   Self,  peer  and  teacher-­‐assessed  in  lab  work.     18
    • Stephen Taylor Curriculum StudiesUnit  3:  Energy,  Work  and  Power  Unit  Question   Selected  Assessment  Statements  (content)  How  does  energy  transfer  produce   • Define  energy    change?   • Identify  the  form(s)  of  energy  possessed  by  an  object  or   system  Enduring  Understanding(s)   • Distinguish  between  kinetic  and  potential  energy  All  physical  processes  can  be   • Compare  the  relative  quantities  of  a  form  of  energy   possessed  by  a  set  of  objects.  explained  through  the  transfer  of  conserved  energy.     • Define  work     • Outline  how  work  affects  the  quantity  of  energy  in  an  object   • Define  power     • Outline  power  to  the  time  and  work  needed  to  complete  a   task.   • State  the  SI  and  commonly  used  units  for  work,  energy  and   power   • Define  efficiency   • Apply  efficiency  to  the  energy  or  power  needed  to  complete   a  task  Summative  assessment  tasks  Criterion  A:  One  World   Not  assessed  here.    Criterion  B:  Communication  in  Science   Assessed  in  the  lab  report  below.    Criterion  C:  Knowledge  &  Understanding   Unit  test,  criterion-­‐graded.  Criterion  D:  Scientific  Inquiry   Student-­‐designed  investigation  to  determine  the  Criterion  E:  Processing  Data   energy  in  a  rubber  band  or  bouncy  ball.    Criterion  F:  Attitudes  in  Science   Self,  peer  and  teacher-­‐assessed  in  lab  work.    Unit  4:  Electricity  Unit  Question   Assessment  Statements  (content)  How  can  we  power  a  community?    Enduring  Understanding(s)   • State  that  there  are  two  types  of  electric  charge  carried  by  Electricity  can  be  harnessed  for  the   particles  such  as  the  electron  and  proton  benefit  of  humankind.     • State  and  apply  the  conservation  of  charge   • Describe  the  difference  in  electrical  properties  of  conductors   and  insulators   • Explain  how  objects  obtain  a  net  charge  through  friction   (triboelectric  effect),  contact  and  induction.   • Draw  charge  distributions  and  explain  electrostatic   phenomena   • Define  electrical  power  including  the  relationship   to  voltage  and  current   • Describe  how  electricity  can  be  produced  using   electromagnetic  induction   • Distinguish  between  alternating  current  and  direct  current  Summative  assessment  tasks  Criterion  A:  One  World   Not  assessed  Criterion  B:  Communication  in  Science   Safety  with  electricity  Criterion  C:  Knowledge  &  Understanding   Unit  test,  criterion-­‐graded.  Criterion  D:  Scientific  Inquiry   Modeling  the  laws  of  electricity.    Criterion  E:  Processing  Data  Criterion  F:  Attitudes  in  Science   Self,  peer  and  teacher-­‐assessed  in  lab  work.     19
    • Stephen Taylor Curriculum StudiesUnit  5:  Atomic  Science  Unit  Question   Assessment  Statements  (content)  How  can  we  use  power  responsibly?   • Describe  the  structure  of  the  atom,  especially  the  nucleus.   Define  the  nuclear  terms:  Nuclide,  Nucleon  and  Isotope  Enduring  Understanding(s)   • • Determine  the  atomic  number,  mass  number  and  neutron  Atomic  energy  is  one  of  many  sources   number  for  a  nuclide  using  a  periodic  table  of  sustainable  electricity,  yet  has   • Describe  the  strong  and  electrostatic  forces  in  the  nucleus.  significant  risks.     • Explain  why  some  nuclei  are  stable  while  others  are   unstable.   • Describe  the  properties  of  alpha,  beta  and  gamma  radiation   • Define  the  term  radioactive  half-­‐life   • Outline  the  basic  biological  effects  of  nuclear  radiation.   • Describe  the  process  of  nuclear  fission  and  nuclear  fusion   • Construct  and  complete  nuclear  decay  and  fission  equations   • State  some  uses  for  nuclear  radiation.   • Describe  the  basic  operation  of  nuclear  power  plantsSummative  assessment  tasks  Criterion  A:  One  World   Powering  the  planet  –  student  investigations  into  Criterion  B:  Communication  in  Science   energy  sources  for  sustainability.    Criterion  C:  Knowledge  &  Understanding   Unit  test,  criterion-­‐graded.  Criterion  D:  Scientific  Inquiry   Modeling  radioactive  decay.    Criterion  E:  Processing  Data  Criterion  F:  Attitudes  in  Science   Self,  peer  and  teacher-­‐assessed  in  lab  work.       20
    • Stephen Taylor Curriculum StudiesAppendix  II:  (complete)  Aims  and  objectives  of  the  MYP  sciences.  Taken  from  the  science  subject  guide  (IB,  2010a)    Aims  The  aims  of  any  MYP  subject  and  of  the  personal  project  state  in  a  general  way  what  the  teacher  may  expect  to  teach  or  do,  and  what  the  student  may  expect  to  experience  or  learn.  In  addition,  they  suggest  how  the  student  may  be  changed  by  the  learning  experience.  The  aims  of  the  teaching  and  study  of  MYP  sciences  are  to  encourage  and  enable  students  to:  1. develop  curiosity,  interest  and  enjoyment  towards  science  and  its  methods  of  inquiry  2. acquire  scientific  knowledge  and  understanding  3. communicate  scientific  ideas,  arguments  and  practical  experiences  effectively  in  a  variety  of  ways  4. develop  experimental  and  investigative  skills  to  design  and  carry  out  scientific  investigations  and   to  evaluate  evidence  to  draw  a  conclusion  5. develop  critical,  creative  and  inquiring  minds  that  pose  questions,  solve  problems,  construct   explanations,  judge  arguments  and  make  informed  decisions  in  scientific  and  other  contexts  6. develop  awareness  of  the  possibilities  and  limitations  of  science  and  appreciate  that  scientific   knowledge  is  evolving  through  collaborative  activity  locally  and  internationally  7. appreciate  the  relationship  between  science  and  technology  and  their  role  in  society  8. develop  awareness  of  the  moral,  ethical,  social,  economic,  political,  cultural  and  environmental   implications  of  the  practice  and  use  of  science  and  technology  9. observe  safety  rules  and  practices  to  ensure  a  safe  working  environment  during  scientific  activities  10. engender  an  awareness  of  the  need  for  and  the  value  of  effective  collaboration  during  scientific   activities.    Objectives  The  objectives  of  any  MYP  subject  and  of  the  personal  project  state  the  specific  targets  that  are  set  for  learning  in  the  subject.  They  define  what  the  student  will  be  able  to  accomplish  as  a  result  of  studying  the  subject.  These  objectives  relate  directly  to  the  assessment  criteria  found  in  the  “Sciences  assessment  criteria”  section.    A   One  world  This  objective  refers  to  enabling  students  to  gain  a  better  understanding  of  the  role  of  science  in  society.  Students  should  be  aware  that  science  is  a  global  endeavour  and  that  its  development  and  applications  can  have  consequences  for  our  lives.  One  world  should  provide  students  with  the  opportunity  to  critically  assess  the  implications  of  scientific  developments  and  their  applications  to  local  and/or  global  issues.  At  the  end  of  the  course,  students  should  be  able  to:  • explain  the  ways  in  which  science  is  applied  and  used  to  address  specific  problems  or  issues  • discuss  the  effectiveness  of  science  and  its  application  in  solving  problems  or  issues  • discuss  and  evaluate  the  moral,  ethical,  social,  economic,  political,  cultural  and  environmental   implications  of  the  use  of  science  and  its  application  in  solving  specific  problems  or  issues.    B   Communication  in  science  This  objective  refers  to  enabling  students  to  become  competent  and  confident  when  communicating  information  in  science.  Students  should  be  able  to  use  scientific  language  correctly  and  a  variety  of  communication  modes  and  formats  as  appropriate.  Students  should  be  aware  of  the  importance  of  acknowledging  and  appropriately  referencing  the  work  of  others  when  communicating  in  science.    At  the  end  of  the  course,  students  should  be  able  to:  • use  scientific  language  correctly  • use  appropriate  communication  modes  such  as  verbal  (oral,  written),  visual  (graphic,  symbolic)   and  communication  formats  (laboratory  reports,  essays,  presentations)  to  effectively  communicate   theories,  ideas  and  findings  in  science  • acknowledge  the  work  of  others  and  the  sources  of  information  used  by  appropriately   documenting  them  using  a  recognized  referencing  system.    C   Knowledge  and  understanding  of  science   21
    • Stephen Taylor Curriculum StudiesThis  objective  refers  to  enabling  students  to  understand  scientific  knowledge  (facts,  ideas,  concepts,  processes,  laws,  principles,  models  and  theories)  and  to  apply  it  to  construct  scientific  explanations,  solve  problems  and  formulate  scientifically  supported  arguments.    At  the  end  of  the  course,  students  should  be  able  to:  • recall  scientific  knowledge  and  use  scientific  understanding  to  construct  scientific  explanations  • apply  scientific  knowledge  and  understanding  to  solve  problems  set  in  familiar  and  unfamiliar   situations  • critically  analyse  and  evaluate  information  to  make  judgments  supported  by  scientific   understanding.    D   Scientific  inquiry  While  the  scientific  method  may  take  on  a  wide  variety  of  approaches,  it  is  the  emphasis  on  experimental  work  that  characterizes  MYP  scientific  inquiry.  This  objective  refers  to  enabling  students  to  develop  intellectual  and  practical  skills  to  design  and  carry  out  scientific  investigations  independently  and  to  evaluate  the  experimental  design  (method).    At  the  end  of  the  course,  students  should  be  able  to:  • state  a  focused  problem  or  research  question  to  be  tested  by  a  scientific  investigation  • formulate  a  testable  hypothesis  and  explain  it  using  scientific  reasoning  • design  and  carry  out  scientific  investigations  that  include  variables  and  controls,  material  and/or   equipment  needed,  a  method  to  be  followed  and  the  way  in  which  the  data  is  to  be  collected  and   processed  • evaluate  the  validity  and  reliability  of  the  method  • judge  the  validity  of  a  hypothesis  based  on  the  outcome  of  the  investigation  suggest  improvements   to  the  method  or  further  inquiry,  when  relevant.    E    Processing  data  This  objective  refers  to  enabling  students  to  collect,  process  and  interpret  sufficient  qualitative  and/or  quantitative  data  to  draw  appropriate  conclusions.  Students  are  expected  to  develop  analytical  thinking  skills  to  interpret  data  and  judge  the  reliability  of  the  data.    At  the  end  of  the  course,  students  should  be  able  to:  • collect  and  record  data  using  units  of  measurement  as  and  when  appropriate      • organize,  transform  and  present  data  using  numerical  and  visual  forms    • analyse  and  interpret  data    • draw  conclusions  consistent  with  the  data  and  supported  by  scientific  reasoning.    F   Attitudes  in  science  This  objective  refers  to  encouraging  students  to  develop  safe,  responsible  and  collaborative  working  practices  in  practical  science.    During  the  course,  students  should  be  able  to:  • work  safely  and  use  material  and  equipment  competently    • work  responsibly  with  regards  to  the  living  and  non-­‐living  environment    • work  effectively  as  individuals  and  as  part  of  a  group  by  collaborating  with  others.     22
    • Stephen Taylor Curriculum Studies  Appendix  III:  The  MYP  Curriculum  Framework  The  MYP  model,  like  the  PYP  and  DP,  places  the  fundamental  stakeholder,  the  Learner,  at  the   centre   of   an   octagon.   Central   to   student  learning  is  the  Learner  Profile,  a  series  of  ten  core   values   deemed   to   be   descriptors   of  traits  of  a  person  who  embodies  the  mission  of   the   IB.   This   is   surrounded   by   the   five  Areas   of   Interaction   (Health   and   social  education,   community   and   service,   human  ingenuity,   approaches   to   learning   and   The  current  MYP  model.  Taken  from  A  History  of  the  Middle  Years  environments),  which  act  as  lenses  to  focus  a   Programme  (Appendix)  (Nicolson  &  Hannah,  2010)  unit  of  inquiry  in  the  class.  Moving  outward  again,  we  see  the  eight  subject  areas,  which  are  to  be  offered  concurrently  during  a  student’s  educational  experience.  Each  of  these  subject  areas  has  its  own  subject  guide,  which  outlines  aims,  objectives,  key  concepts,  assessment  criteria  (all  assessment  is  criterion-­‐based)  and  descriptors  for  achievement.  Units   of   inquiry   in   the   MYP   are   intended   to   be   planned   in   collaboration   with   another  teacher,   making   authentic   connections   between   subjects   where   possible.   Planning  should   begin   with   an   area   of   interaction   focus,   and   build   from   there   with   enduring  understandings   and   unit   questions,   based   on   a   backward-­‐design   model.   Key   concepts   in  each  subject  area  are  stated  by  the  IB,  though  specific  factual  understandings  are  not,  and  these  are  to  be  addressed  in  curriculum  planning.  This  concept-­‐based  curriculum  is  heavily  guided  by  the  work  of  H.  Lynn  Erickson.  Lacking  a  stipulated  syllabus  the  MYP  retains  the  ability  to  be  culturally  adaptive:  schools  can  use  the  content  of  local  systems  or  standards  as  the  foundation  of  their  ‘what  to  teach’,  yet  implement  the  programme  as  intended  by  the  MYP.     23
    • Stephen Taylor Curriculum StudiesAppendix  IV:  Two-­‐dimensional  vs.  three-­‐dimensional  instruction,    (Erickson,  2012)       24
    • Stephen Taylor Curriculum StudiesAppendix  V:  Command  Terms  in  the  MYP  (IB,  2010c)  This  is  a  small  selection  of  the  set  of  definitions  of  the  action  verbs  now  used  in  MYP  documents  as  a  common  language  of  assessment  between  subjects.       25
    • Stephen Taylor Curriculum Studies