solar radiation modelling

2,059 views
1,997 views

Published on

national level ppt on "solar radiation modelling for design of solar systems"

Published in: Education
1 Comment
2 Likes
Statistics
Notes
  • In slide 11, the line below:

    An = 297672k - 37.37.853 for 0.5<1

    just wanna ask if 297672 has a point... i could not get the approximate graph like the graph you have show in the succeeding slides.
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
No Downloads
Views
Total views
2,059
On SlideShare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
0
Comments
1
Likes
2
Embeds 0
No embeds

No notes for slide

solar radiation modelling

  1. 1. WELCOME
  2. 2. BY: I.S.GURURAGHAVENDRA RAVINDRA.R 2 nd SEM M.TECH ENERGY SYSTEMS ENGG. BVBCET, HUBBALLI
  3. 5. Basic concepts <ul><li>Radiant energy travels in the form of electromagnetic waves. </li></ul><ul><li>These waves do not require molecules to propagate. </li></ul><ul><li>Different types of radiation are characterized by different wavelengths. </li></ul>
  4. 6. Characteristics of the solar radiation <ul><li>Solar radiation is made up of electro magnetic waves (Es), which travel from the sun to the earth with the speed of light ( c ). </li></ul><ul><li>Energy(E), wavelength ( λ ) of the wave is related to the frequency ( ν ). </li></ul><ul><li>c = νλ </li></ul><ul><li>E = h * c / λ </li></ul><ul><li>Where, h = Planck’s constant </li></ul><ul><li>=6.626*10 -34 </li></ul>
  5. 7. Energy from the Sun <ul><li>The total solar energy absorbed by Earth's atmosphere, oceans and land masses is approximately 3,850,000 exajoules (EJ) (10 18 joules) per year. (70% of incoming sunlight) (1 Joule = energy required to heat one gram of dry, cool air by 1˚ C) </li></ul><ul><li>Primary energy use 487 EJ (0.0126%) </li></ul><ul><li>Electricity 56.7 EJ (0.0015%) </li></ul>
  6. 8. Breakdown of incoming solar energy
  7. 9. Global solar radiation <ul><li>The quantity of short wave radiant energy emitted by the sun passing through a unit horizontal area in unit time is referred to generally as global solar radiation. </li></ul><ul><li>H av / H 0 = a+b(n/N) </li></ul><ul><li>where, </li></ul><ul><li>H0=(24/ π )*Isc[{1+0.033cos(360n/365)}(cos ϕ *cos δ *sin ω +((2* π * ω )/360)*sin ϕ *sin δ )] </li></ul><ul><li>ETR = 10.39*K*(cos θ *cos δ *sin ω + ω *sin ϕ *sin δ) </li></ul>
  8. 10. Attenuation of beam radiation <ul><li>τ λ = τ λ(s) * τ λ(abs) </li></ul><ul><li>τ λ(s) = monochromatic atmospheric transmittance considering scattering only (at wavelength λ) </li></ul><ul><li>τ λ(abs) = monochromatic atmospheric transmittance considering absorption only </li></ul><ul><li>τ λ= monochromatic atmospheric transmittance considering both absorption and scattering </li></ul>
  9. 11. Model development and description <ul><li>G h = A k *A N *A t </li></ul><ul><li>Where, Ak = 1.1196k-23.04 for k<0.5 </li></ul><ul><li>A k =297672 k -37.853 for 0.5<k < 1 </li></ul><ul><li>A N =0.01407sin[360/365(284+N)]-0.0357 </li></ul><ul><li>A t =t 4 -47.958t 3 +795.68t 2 -5291t+12158 </li></ul>Where , G h =The hourly global solar irradiation on a horizontal surface(W m -2 ) N=The Julian day of the year T =The hour of the day K=The cloudiness degree.
  10. 12. Hourly global solar radiation Where , GD =The daily global solar radiation. t1 and t2 = The sunset and the sunrise hours, respectively. Gh =The hourly global radiation in horizontal surface
  11. 13. Hourly solar radiation for julian day N=52,1997 and K<=0.5 Hourly global radiation for julian day N=47, 1997 and 0.5<K<1
  12. 14. The monthly global solar radiation can be estimates by <ul><li>G M = Σ G D </li></ul>Where, d 1 and d e are ,respectively the first and the latest day of the month RMSE = {[ Σ (G ical – G imes ) 2 ]/n} 1/2
  13. 15. <ul><li>Monthly global radiation(MJ m -2 ),modeled versus measured using the present mode </li></ul>
  14. 16. <ul><li>Mean bias errors for monthly global radiation </li></ul>
  15. 18. <ul><li>Mean relative percentage error for monthly global radiation </li></ul>
  16. 19. <ul><li>Mean monthly global insolation (MJ m-2),modeled versus measured using Sivkov model </li></ul>
  17. 20. Comparison with Sivkol Model <ul><li>H m =4.9(n m ) 1.31 + 10.500(sin α ) 2.1 </li></ul><ul><li>Where , </li></ul><ul><li>H m and n m are the monthly global irradiance(in cal . Cm -2 ) </li></ul>
  18. 21. Conclusions <ul><li>Mathematical model for prediction of global solar radiation in horizontal surface is presented </li></ul><ul><li>Low values of RMSE,MBE and MPE for k<0.5, is remarkable for estimating the daily global solar radiation </li></ul><ul><li>Estimation of mean monthly and yearly global solar radiation have an accuracy of 4.5% and 0.34% respectively </li></ul><ul><li>Model predictions are in good agreement with experimental data </li></ul><ul><li>Essentially this modeling can be a useful tool for the design of various solar energy systems </li></ul>
  19. 22. References <ul><li>Solar energy decision support system T. V. RAMACHANDRA*†‡, RAJEEV KUMAR JHA†, S. VAMSEE KRISHNA† and B. V. SHRUTHI† </li></ul><ul><li>International Journal of Sustainable Energy Vol. 24, No. 4, December 2005, 207–224 </li></ul><ul><li>Modelling Direct, Diffuse, and Total Solar Radiation for Cloudless Days </li></ul><ul><li>P. W. Suckling and J.E. Hay </li></ul><ul><li>Department of Geography, University of British Columbia, Vancouver </li></ul><ul><li>[Manuscript received 14 June 1976; in revised form 1 October 19761 </li></ul><ul><li>A global solar radiation model for the design of solar energy systems </li></ul><ul><li>Asian Journal of scientific research 1(3) : 231-238, 2008 </li></ul><ul><li>Solar Radiation Modelling and Measurements for Renewable Energy Applications: Data and Model Quality D.R. Myers </li></ul><ul><li>To be presented at the International Expert Conference on Mathematical Modelling of Solar Radiation and Daylight—Challenges for the 21st Century Edinburgh, Scotland September 15–16, 2003 </li></ul>
  20. 23. <ul><li>THANK </li></ul><ul><li>YOU </li></ul>

×