FUENTES DE CAMPOS MAGNETICOS
Upcoming SlideShare
Loading in...5
×

Like this? Share it with your network

Share

FUENTES DE CAMPOS MAGNETICOS

  • 36,218 views
Uploaded on

FUENTES DE CAMPOS MAGNETICOS

FUENTES DE CAMPOS MAGNETICOS

More in: Education
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
  • hola graccias por el libro
    Are you sure you want to
    Your message goes here
  • tham por el maporte
    Are you sure you want to
    Your message goes here
No Downloads

Views

Total Views
36,218
On Slideshare
35,718
From Embeds
500
Number of Embeds
15

Actions

Shares
Downloads
302
Comments
2
Likes
2

Embeds 500

http://www.slideshare.net 145
http://fisicax2.blogspot.com 136
http://fisicax2.blogspot.com.es 128
http://fisicax2.blogspot.mx 35
http://fisicax2.blogspot.com.ar 22
http://milenasanchezamador.wordpress.com 11
http://monica898.wordpress.com 8
http://blogfisicayalgunasotrascosas.wordpress.com 6
http://www.fisicax2.blogspot.com 2
http://fisicax2.blogspot.ca 2
http://fisicax2.blogspot.de 1
http://www.fisicax2.blogspot.com.es 1
http://fisicax2.blogspot.com.br 1
http://webcache.googleusercontent.com 1
http://rosesdownblogt.wordpress.com 1

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Fuentes de campo magnético
  • 2. La ley de Biot-Savart Propiedades del campo magnético creado por una corriente eléctrica: El vector d B es perpendicular tanto a d s (que es un vector que tiene unidades de longitud y está en la dirección de la corriente) como del vector unitario dirigido del elemento a P La magnitud de d B es inversamente proporcional a r 2 , donde r es la distancia del elemento a P. La magnitud de d B es proporcional a la corriente y a la longitud ds del elemento. La magnitud de d B es proporcional a sen θ , donde θ es el ángulo entre los vectores d s y .  o : permeabilidad del espacio libre
  • 3. Campo magnético alrededor de un conductor recto delgado
  • 4. Si tenemos un alambre infinito recto: θ 1 = 0 y θ 2 =  .
  • 5. Campo magnético sobre el eje de un lazo de corriente circular
  • 6. En el centro del lazo (x = 0): En puntos muy lejanos (x >> a): Recordando que  = IA = I  a 2
  • 7. Fuerza magnética entre dos conductores paralelos Dos alambres que conducen corriente ejercen fuerzas magnéticas entre sí. La dirección de la fuerza depende de la dirección de la corriente.
  • 8. Conductores paralelos que conducen corriente en la misma dirección se atraen entre sí, en tanto que conductores paralelos que conducen corrientes en direcciones opuestas se repelen entre sí. Si dos alambres paralelos a 1 m de distancia conducen la misma corriente y la fuerza por unidad de longitud de cada alambre es de 2 × 10  7 N/m, entonces la corriente se define como 1 amperio (A) . Si un conductor conduce una corriente estable de 1 A, entonces la cantidad de carga que fluye por sección transversal del conductor en 1 s es 1 C.
  • 9. Ley de Ampère La integral de línea de B · d s alrededor de cualquier trayectoria cerrada es igual a  0 I, donde I es la corriente estable total que pasa a través de cualquier superficie delimitada por la trayectoria cerrada.
  • 10. Fuera del toroide ( r<R ): Dentro del toroide: Fuera del toroide ( r>R ):
  • 11. Si suponemos que el solenoide es muy largo comparado con el radio de sus espiras, el campo es aproximadamente uniforme y paralelo al eje en el interior del solenoide y es nulo fuera del solenoide.
  • 12. Campo magnético producido por un solenoide en un punto de su eje:
  • 13. En el punto medio del solenoide, suponiendo que el solenoide es largo comparado con a: En el punto extremo del solenoide, suponiendo que el solenoide es largo comparado con a:
  • 14. Corriente de desplazamiento y la forma general de la ley de Ampère La ley de Ampère de la forma anterior sólo es válida si el campo eléctrico es constante en el tiempo . Los campos magnéticos son producidos tanto por campos eléctricos constantes como por campos eléctricos que varían con el tiempo. Ley de Ampère-Maxwell: Se debe aclarar que la expresión anterior sólo es válida en el vacío. Si un material magnético está presente, se debe utilizar la permeabilidad y la permitividad características del material.
  • 15. Vector de magnetización e intensidad de campo magnético El estado magnético de una sustancia se describe por medio de una cantidad denominada vector de magnetización M , cuya magnitud se define como el momento magnético por unidad de volumen de la sustancia. El campo magnético total en un punto en una sustancia depende tanto del campo externo aplicado como de la magnetización de la sustancia. La intensidad de campo magnético H de una sustancia representa el efecto de la corriente de conducción en alambres sobre una sustancia (B ext =  0 H)
  • 16. Clasificación de sustancias magnéticas Ferromagnetismo Son sustancias cristalinas cuyos átomos tienen momentos magnéticos permanentes que muestran intensos efectos magnéticos. Todos los materiales ferromagnéticos están constituidos con regiones microscópicas llamadas dominios . Ejemplos: hierro, cobalto, níquel.
  • 17. Si sobre un material ferromagnético se aplica una corriente, la magnitud del campo magnético H aumenta linealmente con I. La curva B versus H se denomina curva de magnetización : Este efecto se conoce como histéresis magnética . La forma y tamaño de la histéresis dependen de las propiedades de la sustancia ferromagnética y de la intensidad del campo aplicado. La histéresis para materiales ferromagnéticos “duros” es característicamente ancha, lo que corresponde a una gran magnetización remanente. El área encerrada por la curva de magnetización representa el trabajo requerido para llevar al material por el ciclo de histéresis .
  • 18. Paramagnetismo y diamagnetismo Al igual que los ferromagnéticos, los materiales paramagnéticos están hechos de átomos que tienen momentos magnéticos permanentes, mientras que los diamagnéticos carecen de ellos. Aluminio, calcio, cromo son ejemplos de sustancias paramagnéticas mientras que el cobre, oro y plomo son ejemplos de sustancias diamagnéticas. Para las sustancias paramagnéticas y diamagnéticas, el vector de magnetización M es proporcional a la intensidad de campo magnético H: Donde  es un factor adimensional llamado susceptibilidad magnética . Para sustancias paramagnéticas  es positiva y para sustancias diamagnéticas  es negativa.