SlideShare una empresa de Scribd logo
1 de 48
Circuitos de corriente alterna
Corriente continua (DC) Corriente alterna (AC) No varia con el tiempo Varia con el tiempo en forma sinusoidal tanto el voltaje como la corriente Corrientes
La  corriente rms (  I rms  )  es el valor de corriente alterna que produciría en un resistor el mismo efecto de calentamiento que una corriente continua. Los voltímetros y amperímetros están diseñados para medir valores rms de la corriente o la tensión.
Valor Eficaz (Rms)   ,[object Object],[object Object],[object Object],[object Object],[object Object]
Corriente alterna en elementos de circuito I.   Corriente alterna en una resistencia La tensión aplicada y la corriente están en fase Para calcular la corriente en el circuito aplicamos la L.K.V
Notación fasorial La corriente y el voltaje pueden representarse mediante vectores bidimensionales llamados  fasores .  Podemos representar la caída de potencial en una resistencia como un vector de módulo  V R , que forma un ángulo    con el eje X El valor instantáneo de la caída de tensión es la componente x del vector V R , que gira en sentido antihorario con una velocidad   . Combinar cantidades sinusoidales con diferencias de fase utilizando fasores se convierte en una suma de vectores A cos(  t-   )  Fasor A B cos(  t-   )  Fasor B Uso de los fasores Cualquier función A cos(  t-  ), será la componente x de un fasor que forma un ángulo (  t-  ) con el eje x
Representación de fasor de voltaje AC y de la corriente   Un fasor (vector rotatorio ) de longitud  V  0   y una frecuencia  ω   tiene un componente en “x” igual al voltaje AC  .  Un fasor similar puede representar la corriente.  El ángulo entre los fasores voltaje y  corriente es el adelanto/retraso entre la corriente y el voltaje.  i  =  I 0  cos ω t  Corriente instantanea
Relación De Fase   ,[object Object],[object Object],[object Object],[object Object],[object Object]
Circuito  AC  que contiene solamente la resistencia  R   donde:  V R 0  =   I 0 R
P = I rms R   2
Cada medidor da valores rms Una fuente de potencia de ca produce un voltaje máximo V máx  = 100  V.  Esta alimentación de potencia se conecta a un resistor de 24  Ω  y se miden la corriente y el voltaje en el resistor con un amperímetro y un voltímetro de ca ideales, como en la figura. ¿Cuáles son los valores que registra cada medidor?
Un amplificador de audio, representado por medio de la fuente de ca y de un resistor en la figura, entrega a un altavoz voltaje alterno a frecuencias de audio. Si el voltaje de salida tiene una amplitud de 15.0  V,  R=  8.20  Ω , y el altavoz es equivalente a una resistencia de 10.4  Ω , ¿cuál es la potencia promedio en el tiempo que se le entrega?
Las tres lámparas están en paralelo La figura muestra tres lámparas conectadas a un suministro de voltaje doméstico de 120  V  ca (rms). Las lámparas 1 y 2 tienen focos de 150 W y la lámpara 3 tiene un foco de 100 W. Encuentre la corriente rms y la resistencia de cada foco.
Circuito AC que contiene solamente la inductancia  L  Para calcular la corriente en el circuito aplicamos la L.K.V
Circuito AC que contiene solamente la inductancia  L  El voltaje se adelanta 90º a la corriente
En el punto  a  la corriente comienza a incrementar en la dirección positiva En este instante la rapidez de cambio de la corriente está en un máximo y, por ende, el voltaje a través del inductor también está a un máximo Conforme la corriente aumenta entre los puntos  a  y  b ,  di/dt  disminuye en forma gradual hasta que alcanza cero en el punto  b .  Como resultado, el voltaje a través del inductor está disminuyendo durante este mismo intervalo de tiempo.
Reactancia o impedancia inductiva   ,[object Object],Asi como un resistor impide el flujo de cargas   ,  un inductor impide también el flujo de cargas   en una corriente alterna debido a la fem autoinducida.  V   0  =  I 0 X L X L  =   L
Ejemplo  Reactancia de una bobina.   ,[object Object],( a )  se aplican   120-V dc;  ( b )  se aplican   120-V ac (rms) a 60.0 Hz.
a) b) En un circuito de ca puramente inductivo, como en la figura,  Vmax  = 100  V.  a) Si la corriente máxima es 7.5 A a 50 Hz, calcule la inductancia  L.  b) ¿A qué frecuencia angular  ω   la corriente máxima es 2.5 A? X L  =   L
Circuito  AC  que contiene solamente un capacitor   C El voltaje retrasa a la corriente en  90º
El voltaje retrasado con corriente en 90º Circuito  AC  que contiene solamente un capacitor   C
Ejemplo  Reactancia del condensador.  ,[object Object]
Un capacitor de 98.0 pF está conectado a un suministro de potencia de 60.0 Hz que produce un voltaje rms de 20.0  V.  ¿Cuál es la carga máxima que aparece en cualesquiera de las placas del capacitor?
a) ¿Para qué frecuencias lineales un capacitor de 22.0  μ F tiene una reactancia por debajo de 175  Ω ? b) Sobre este mismo intervalo de frecuencia, ¿cuál es la reactancia de un capacitor de 44.0  μ F?
Relaciones   RMS Resistencia   Reactancia Capacitiva   Reactancia Inductiva   La unidad de la resistencia y de la reactancia es ohmios.
Potencia   Resistencia   Capacitancia   Inductancia   La energía disipada en un resistor se convierte al calor.  El condensador es un dispositivo de almacenaje de la energía .  Durante el ciclo la energía se almacena temporalmente en el campo eléctrico .  Por lo tanto, la potencia no es una potencia verdadera sino potencia reactiva llamada en unidades de voltio-amperio-reactivo  (VAR).  El inductor es un dispositivo de almacenaje de la energía .  Durante el ciclo AC la energía se almacena temporalmente en el campo magnético  La potencia no es potencia verdadero sino reactiva en unidades  VAR.
Impedancia Z de un circuito Es la relación de la amplitud de voltaje en un circuito a la amplitud de corriente en el circuito
Una persona está trabajando cerca del secundario de un transformador, como se muestra en la figura. El voltaje primario es 120  V  a 60 Hz. La capacitancia C i , que es la capacitancia entre la mano y el devanado secundario, es 20.0 pF. Suponiendo que la persona tiene una resistencia de cuerpo a tierra  Re =  50.0 k  Ω . determine el voltaje rms a través del cuerpo.  Sugerencia: Redibuje el circuito con el secundario del tranformador como una fuente de ca simple.
Circuito   RLC en Serie  Solamente una corriente en la conexión de serie utilizada como referencia.  V R   e  I  están en fase  , V L  adelanta  la corriente en  90º  y V C   se retrasa a la corriente en  90º Voltaje total - los fasores  se suman de la misma manera que los vectores.  La misma relación para valores  RMS Impedancia en   ohms. Z
ELICE
 
 
Factor de Potencia, Potencia  Real y reactiva   Factor de potencia = pf =cos   Solamente los elementos resistivos disipan energía.  Los elementos reactivos almacenan energía temporalmente en una parte del ciclo AC   .  Esta energía se devuelve en otra parte del ciclo   .  Sin embargo, las fuente de energía y otros equipos tal como transformadores deben poder manejar el VA máximo requerido   .
f 0  frecuencia de resonancia Factor de Calidad
La fuente de voltaje en la figura tiene una salida V = (100  V)  cos( 1000t ). Determine a) la corriente en el circuito y b) la potencia suministrada por la fuente, c) Muestre que la potencia disipada en el resistor es igual a la potencia suministrada por la fuente.   X L  =   L X L  =  1000(50x10 -3  Ω
La fuente de voltaje en la figura tiene una salida V = (100  V)  cos( 1000t ). Determine a) la corriente en el circuito y b) la potencia suministrada por la fuente, c) Muestre que la potencia disipada en el resistor es igual a la potencia suministrada por la fuente.
Un voltaje de ca de la forma  v =  (100  V)  sen(1000t) se aplica a un circuito  RLC en  serie. Si  R  = 400  Ω ,  C=  5.0  μ   F,  y  L =  0.50 H, encuentre la corriente máxima y la potencia promedio disipada en el circuito.   X L  =   L
Un resistor de 80  Ω , un inductor de 200 mH y un capacitor de 0.150  μ F se conectan en paralelo a través de una fuente de 120  V  (rms) que opera a 374 rad/s. a) Calcule la corriente rms en el resistor, inductor y capacitor b) Cuál es la corriente rms entregada por la fuente , c) Cuál es la frecuencia resonante del circuito
 
12. 8   Transformadores Un transformador es un dispositivo utilizado para aumentar o disminuir el voltaje en un circuito sin pérdida apreciable de potencia. Consta de dos bobinas arrolladas sobre un núcleo de hierro. Autores Mar Artigao Castillo, Manuel Sánchez Martínez Dpto de Física Aplicada, Escuela Politécnica Superior de Albacete (UCLM) Primario Secundario El flujo que atraviesa cada espira en ambos arrollamientos es el mismo, luego la tensión que aparece en el secundario es Comparando las dos ecuaciones Transformador Reductor Transformador Elevador
 
Si colocamos una  resistencia de carga  en el secundario, aparecerá una corriente  I 2  en fase con V 2  y aparecerá un flujo adicional proporcional a  N 2  I 2  Autores Mar Artigao Castillo, Manuel Sánchez Martínez Dpto de Física Aplicada, Escuela Politécnica Superior de Albacete (UCLM) Como el flujo en el primario debe tener el mismo ritmo de variación al estar conectado a una fem externa, debe aparecer una corriente  I 1 en el primario de forma que Si no existen pérdidas, se debe cumplir que Uso de los transformadores Transporte de energía eléctrica con pérdidas mínimas de energía por efecto Joule utilizando alto voltaje y baja corriente.
 
La corriente total necesaria para Albacete sería de 700.000 A, para lo cual se necesitarían gruesos cilindros de cobre con grandes pérdidas. Dentro de la ciudad se sitúan transformadores que reducen el valor del voltaje hasta 10.000 V, por ejemplo. Cerca de las casa se sitúan nuevos transformadores que reducen el voltaje de nuevo hasta 220 V. Debido a esta facilidad para aumentar o reducir el voltaje de la corriente alterna, se utiliza este tipo de corriente y no la corriente continua. Autores Mar Artigao Castillo, Manuel Sánchez Martínez Dpto de Física Aplicada, Escuela Politécnica Superior de Albacete (UCLM) Ejemplo: En Albacete, con una población de 100.000 habitantes, si suponemos que cada uno consume una potencia media de 1.5 kW, se necesita para cada persona una corriente Si se utilizan transformadores de alta (elevadores) para transportar la potencia, la corriente necesaria se reduce a
Hallar la corriente máxima y el ángulo de desfase.  Hallar también la potencia media suministrada por la f.em.  Datos: Vo = 100 V, R= 1 W, L=0.003 H, C=0.002 F,   =120   rad/s Nodo b a c b i L i C i R
Fasores se suman como vectores i 0
 
EJERCICIOS DE REPASO ,[object Object],a)  Inmediatamente después que el interruptor es cerrado, ¿cuál es la corriente I R!   a través del resistor R 1 ?

Más contenido relacionado

La actualidad más candente

Potencia y factor de potencia en circuitos monofásicos
Potencia y factor de potencia en circuitos monofásicosPotencia y factor de potencia en circuitos monofásicos
Potencia y factor de potencia en circuitos monofásicos
Walter Junior Castro Huertas
 
Problemas resueltos transformadores
Problemas resueltos transformadoresProblemas resueltos transformadores
Problemas resueltos transformadores
Laurita Cas
 
Capacitores inductores
Capacitores inductoresCapacitores inductores
Capacitores inductores
david159936
 
Circuitos rlc
Circuitos rlcCircuitos rlc
Circuitos rlc
kfreile2
 

La actualidad más candente (20)

ejercicios desarrollados de Lineas de transmision
ejercicios desarrollados de Lineas de transmisionejercicios desarrollados de Lineas de transmision
ejercicios desarrollados de Lineas de transmision
 
Valores eficaces
Valores eficacesValores eficaces
Valores eficaces
 
2 problemas alterna
2 problemas alterna2 problemas alterna
2 problemas alterna
 
CALCULO DE IMPEDANCIA,POTENCIA Y FACTOR DE POTENCIA EN CIRCUITO RC Y RL
CALCULO DE IMPEDANCIA,POTENCIA Y FACTOR DE POTENCIA EN CIRCUITO RC Y RLCALCULO DE IMPEDANCIA,POTENCIA Y FACTOR DE POTENCIA EN CIRCUITO RC Y RL
CALCULO DE IMPEDANCIA,POTENCIA Y FACTOR DE POTENCIA EN CIRCUITO RC Y RL
 
Potencia y factor de potencia en circuitos monofásicos
Potencia y factor de potencia en circuitos monofásicosPotencia y factor de potencia en circuitos monofásicos
Potencia y factor de potencia en circuitos monofásicos
 
Conceptos basicos de rectificadores Electronica I
Conceptos basicos de rectificadores Electronica IConceptos basicos de rectificadores Electronica I
Conceptos basicos de rectificadores Electronica I
 
Problemas resueltos transformadores
Problemas resueltos transformadoresProblemas resueltos transformadores
Problemas resueltos transformadores
 
Campos Electromagneticos - Tema 3
Campos Electromagneticos - Tema 3Campos Electromagneticos - Tema 3
Campos Electromagneticos - Tema 3
 
Capacitores inductores
Capacitores inductoresCapacitores inductores
Capacitores inductores
 
Exposicion de circuitos 2 potencia instantanea y promedio
Exposicion de circuitos 2 potencia instantanea y promedioExposicion de circuitos 2 potencia instantanea y promedio
Exposicion de circuitos 2 potencia instantanea y promedio
 
Circuitos rc y rl
Circuitos rc y rlCircuitos rc y rl
Circuitos rc y rl
 
Resistencia estática y dinamica de diodos
Resistencia estática y dinamica de diodosResistencia estática y dinamica de diodos
Resistencia estática y dinamica de diodos
 
Circuitos rlc
Circuitos rlcCircuitos rlc
Circuitos rlc
 
Circuitos trifasicos
Circuitos trifasicosCircuitos trifasicos
Circuitos trifasicos
 
3.1 maquinas electricas
3.1 maquinas electricas3.1 maquinas electricas
3.1 maquinas electricas
 
Voltaje de rizado
Voltaje de rizadoVoltaje de rizado
Voltaje de rizado
 
Clase 11 inductores en serie y paralelo
Clase 11 inductores en serie y paraleloClase 11 inductores en serie y paralelo
Clase 11 inductores en serie y paralelo
 
El transistor bjt
El transistor bjtEl transistor bjt
El transistor bjt
 
Flujo de potencia
Flujo de potenciaFlujo de potencia
Flujo de potencia
 
5 polarizacion divisor de voltaje del transistor bjt
5 polarizacion divisor de voltaje del transistor bjt5 polarizacion divisor de voltaje del transistor bjt
5 polarizacion divisor de voltaje del transistor bjt
 

Destacado

Tippens fisica 7e_diapositivas_32a
Tippens fisica 7e_diapositivas_32aTippens fisica 7e_diapositivas_32a
Tippens fisica 7e_diapositivas_32a
Robert
 
Ejercicos fasores
Ejercicos fasoresEjercicos fasores
Ejercicos fasores
VanneGalvis
 
Potencia en corriente alterna presentacion
Potencia en corriente alterna presentacion Potencia en corriente alterna presentacion
Potencia en corriente alterna presentacion
Edgar Mujica
 
Presentación1 de polifasico.pptx 123
Presentación1 de polifasico.pptx 123Presentación1 de polifasico.pptx 123
Presentación1 de polifasico.pptx 123
Jose Guzman
 
Capitulo8potencia ca
Capitulo8potencia caCapitulo8potencia ca
Capitulo8potencia ca
nacho631030
 

Destacado (20)

Tippens fisica 7e_diapositivas_32a
Tippens fisica 7e_diapositivas_32aTippens fisica 7e_diapositivas_32a
Tippens fisica 7e_diapositivas_32a
 
Corriente alterna
Corriente alternaCorriente alterna
Corriente alterna
 
Ejercicos fasores
Ejercicos fasoresEjercicos fasores
Ejercicos fasores
 
IMPEDANCIA Y REACTANCIA
IMPEDANCIA Y REACTANCIAIMPEDANCIA Y REACTANCIA
IMPEDANCIA Y REACTANCIA
 
Tipos de diodos
Tipos de diodosTipos de diodos
Tipos de diodos
 
Diodos y tipos de diodos
Diodos y  tipos de diodosDiodos y  tipos de diodos
Diodos y tipos de diodos
 
Tipos de diodos
Tipos de diodosTipos de diodos
Tipos de diodos
 
Ejercicios resueltos del capítulo 1 del libro de Teoría de Circuitos y dispos...
Ejercicios resueltos del capítulo 1 del libro de Teoría de Circuitos y dispos...Ejercicios resueltos del capítulo 1 del libro de Teoría de Circuitos y dispos...
Ejercicios resueltos del capítulo 1 del libro de Teoría de Circuitos y dispos...
 
Diodo Zener
Diodo ZenerDiodo Zener
Diodo Zener
 
1.2 Tipos de diodos
1.2 Tipos de diodos1.2 Tipos de diodos
1.2 Tipos de diodos
 
CORRIENTE ALTERNA: Fisica C-ESPOL
CORRIENTE ALTERNA: Fisica C-ESPOLCORRIENTE ALTERNA: Fisica C-ESPOL
CORRIENTE ALTERNA: Fisica C-ESPOL
 
Factor potencia
Factor potenciaFactor potencia
Factor potencia
 
Potencia en corriente alterna presentacion
Potencia en corriente alterna presentacion Potencia en corriente alterna presentacion
Potencia en corriente alterna presentacion
 
Presentación1 de polifasico.pptx 123
Presentación1 de polifasico.pptx 123Presentación1 de polifasico.pptx 123
Presentación1 de polifasico.pptx 123
 
Power Point Factor De Potencia
Power Point   Factor De PotenciaPower Point   Factor De Potencia
Power Point Factor De Potencia
 
Curso Sistemas Trifasicos
Curso Sistemas TrifasicosCurso Sistemas Trifasicos
Curso Sistemas Trifasicos
 
Contactores
ContactoresContactores
Contactores
 
Norma4 completa
Norma4 completaNorma4 completa
Norma4 completa
 
Capitulo8potencia ca
Capitulo8potencia caCapitulo8potencia ca
Capitulo8potencia ca
 
El contactor
El contactorEl contactor
El contactor
 

Similar a CORRIENTE ALTERNA

Analisis de circuitos en corriente alterna
Analisis de circuitos en corriente alternaAnalisis de circuitos en corriente alterna
Analisis de circuitos en corriente alterna
Yeyin94
 
Copy+Of+Corriente+Alterna3
Copy+Of+Corriente+Alterna3Copy+Of+Corriente+Alterna3
Copy+Of+Corriente+Alterna3
efren1985
 
Guia cimm 05 – grupo 2 telecomunicaciones
Guia cimm 05 – grupo 2 telecomunicacionesGuia cimm 05 – grupo 2 telecomunicaciones
Guia cimm 05 – grupo 2 telecomunicaciones
sena
 
Telecomunicaciones Grupo 5 CA
Telecomunicaciones Grupo 5 CATelecomunicaciones Grupo 5 CA
Telecomunicaciones Grupo 5 CA
angelitasanchez
 
Electrotecnia ii 1
Electrotecnia ii 1Electrotecnia ii 1
Electrotecnia ii 1
pmayorga4
 
unidad 02 completa.instalaciones eléctricas en domicilio.ppt
unidad 02 completa.instalaciones eléctricas en domicilio.pptunidad 02 completa.instalaciones eléctricas en domicilio.ppt
unidad 02 completa.instalaciones eléctricas en domicilio.ppt
CristhianLazo4
 

Similar a CORRIENTE ALTERNA (20)

Tema corriente alterna
Tema corriente alternaTema corriente alterna
Tema corriente alterna
 
clase 1.pptx
clase 1.pptxclase 1.pptx
clase 1.pptx
 
Circuitos CA
Circuitos CACircuitos CA
Circuitos CA
 
Uso-del-Multimetro.ppt
Uso-del-Multimetro.pptUso-del-Multimetro.ppt
Uso-del-Multimetro.ppt
 
Analisis de circuitos en corriente alterna
Analisis de circuitos en corriente alternaAnalisis de circuitos en corriente alterna
Analisis de circuitos en corriente alterna
 
Circuitos ca (corriente alterna)
Circuitos ca (corriente alterna)Circuitos ca (corriente alterna)
Circuitos ca (corriente alterna)
 
Copy+Of+Corriente+Alterna3
Copy+Of+Corriente+Alterna3Copy+Of+Corriente+Alterna3
Copy+Of+Corriente+Alterna3
 
Circuitos ca
Circuitos caCircuitos ca
Circuitos ca
 
Circuitos ca
Circuitos caCircuitos ca
Circuitos ca
 
CIRCUITOS CA
CIRCUITOS CACIRCUITOS CA
CIRCUITOS CA
 
Guia cimm 05 – grupo 2 telecomunicaciones
Guia cimm 05 – grupo 2 telecomunicacionesGuia cimm 05 – grupo 2 telecomunicaciones
Guia cimm 05 – grupo 2 telecomunicaciones
 
Corriente alterna
Corriente alternaCorriente alterna
Corriente alterna
 
armónicos en los transformadores
armónicos en los transformadoresarmónicos en los transformadores
armónicos en los transformadores
 
Telecomunicaciones Grupo 5 CA
Telecomunicaciones Grupo 5 CATelecomunicaciones Grupo 5 CA
Telecomunicaciones Grupo 5 CA
 
Electrotecnia ii 1
Electrotecnia ii 1Electrotecnia ii 1
Electrotecnia ii 1
 
unidad 02 completa.instalaciones eléctricas en domicilio.ppt
unidad 02 completa.instalaciones eléctricas en domicilio.pptunidad 02 completa.instalaciones eléctricas en domicilio.ppt
unidad 02 completa.instalaciones eléctricas en domicilio.ppt
 
ejercicioscircuitosresueltos.pdf
ejercicioscircuitosresueltos.pdfejercicioscircuitosresueltos.pdf
ejercicioscircuitosresueltos.pdf
 
Corriente Alterna
Corriente AlternaCorriente Alterna
Corriente Alterna
 
Corriente alterna
Corriente alternaCorriente alterna
Corriente alterna
 
Tema 6 corriente alterna
Tema 6 corriente alternaTema 6 corriente alterna
Tema 6 corriente alterna
 

Más de Gustavo Salazar Loor (20)

Max Plus Compilar vhdl
Max Plus Compilar vhdlMax Plus Compilar vhdl
Max Plus Compilar vhdl
 
ECUADOR
ECUADORECUADOR
ECUADOR
 
Electronica I Clase07
Electronica I Clase07Electronica I Clase07
Electronica I Clase07
 
Electronica I Clase07
Electronica I Clase07Electronica I Clase07
Electronica I Clase07
 
Electronica I Clase06
Electronica I Clase06Electronica I Clase06
Electronica I Clase06
 
Electronica I Clase05
Electronica I Clase05Electronica I Clase05
Electronica I Clase05
 
Electronica I Clase04
Electronica I Clase04Electronica I Clase04
Electronica I Clase04
 
Electronica I Clase03
Electronica I Clase03Electronica I Clase03
Electronica I Clase03
 
Electronica I Clase02
Electronica I Clase02Electronica I Clase02
Electronica I Clase02
 
Electronica I Clase01
Electronica I Clase01Electronica I Clase01
Electronica I Clase01
 
TDA
TDATDA
TDA
 
ARBOLES MULTICAMINOS
ARBOLES MULTICAMINOSARBOLES MULTICAMINOS
ARBOLES MULTICAMINOS
 
LISTAS ESPECIALES
LISTAS ESPECIALESLISTAS ESPECIALES
LISTAS ESPECIALES
 
LISTAS
LISTASLISTAS
LISTAS
 
GRAFOS
GRAFOSGRAFOS
GRAFOS
 
HEAPS
HEAPSHEAPS
HEAPS
 
ARBOLES
ARBOLESARBOLES
ARBOLES
 
COLAS
COLASCOLAS
COLAS
 
PILAS
PILASPILAS
PILAS
 
CODIGO DE HUFFMAN
CODIGO DE HUFFMANCODIGO DE HUFFMAN
CODIGO DE HUFFMAN
 

Último

RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACIONRESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
amelia poma
 
PROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdf
PROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdfPROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdf
PROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdf
EduardoJosVargasCama1
 
6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria
Wilian24
 

Último (20)

Tema 10. Dinámica y funciones de la Atmosfera 2024
Tema 10. Dinámica y funciones de la Atmosfera 2024Tema 10. Dinámica y funciones de la Atmosfera 2024
Tema 10. Dinámica y funciones de la Atmosfera 2024
 
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdfPlan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
 
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACIONRESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
 
Power Point E. S.: Los dos testigos.pptx
Power Point E. S.: Los dos testigos.pptxPower Point E. S.: Los dos testigos.pptx
Power Point E. S.: Los dos testigos.pptx
 
FICHA PROYECTO COIL- GLOBAL CLASSROOM.docx.pdf
FICHA PROYECTO COIL- GLOBAL CLASSROOM.docx.pdfFICHA PROYECTO COIL- GLOBAL CLASSROOM.docx.pdf
FICHA PROYECTO COIL- GLOBAL CLASSROOM.docx.pdf
 
prostitución en España: una mirada integral!
prostitución en España: una mirada integral!prostitución en España: una mirada integral!
prostitución en España: una mirada integral!
 
PROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdf
PROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdfPROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdf
PROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdf
 
Los dos testigos. Testifican de la Verdad
Los dos testigos. Testifican de la VerdadLos dos testigos. Testifican de la Verdad
Los dos testigos. Testifican de la Verdad
 
TRABAJO FINAL TOPOGRAFÍA COMPLETO DE LA UPC
TRABAJO FINAL TOPOGRAFÍA COMPLETO DE LA UPCTRABAJO FINAL TOPOGRAFÍA COMPLETO DE LA UPC
TRABAJO FINAL TOPOGRAFÍA COMPLETO DE LA UPC
 
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESOPrueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
 
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdfFeliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
 
Prueba libre de Geografía para obtención título Bachillerato - 2024
Prueba libre de Geografía para obtención título Bachillerato - 2024Prueba libre de Geografía para obtención título Bachillerato - 2024
Prueba libre de Geografía para obtención título Bachillerato - 2024
 
Factores que intervienen en la Administración por Valores.pdf
Factores que intervienen en la Administración por Valores.pdfFactores que intervienen en la Administración por Valores.pdf
Factores que intervienen en la Administración por Valores.pdf
 
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docxPLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
 
6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria
 
1ro Programación Anual D.P.C.C planificación anual del área para el desarroll...
1ro Programación Anual D.P.C.C planificación anual del área para el desarroll...1ro Programación Anual D.P.C.C planificación anual del área para el desarroll...
1ro Programación Anual D.P.C.C planificación anual del área para el desarroll...
 
PP_Comunicacion en Salud: Objetivación de signos y síntomas
PP_Comunicacion en Salud: Objetivación de signos y síntomasPP_Comunicacion en Salud: Objetivación de signos y síntomas
PP_Comunicacion en Salud: Objetivación de signos y síntomas
 
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptx
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptxCONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptx
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptx
 
Louis Jean François Lagrenée. Erotismo y sensualidad. El erotismo en la Hist...
Louis Jean François Lagrenée.  Erotismo y sensualidad. El erotismo en la Hist...Louis Jean François Lagrenée.  Erotismo y sensualidad. El erotismo en la Hist...
Louis Jean François Lagrenée. Erotismo y sensualidad. El erotismo en la Hist...
 
Revista Apuntes de Historia. Mayo 2024.pdf
Revista Apuntes de Historia. Mayo 2024.pdfRevista Apuntes de Historia. Mayo 2024.pdf
Revista Apuntes de Historia. Mayo 2024.pdf
 

CORRIENTE ALTERNA

  • 2. Corriente continua (DC) Corriente alterna (AC) No varia con el tiempo Varia con el tiempo en forma sinusoidal tanto el voltaje como la corriente Corrientes
  • 3. La corriente rms ( I rms ) es el valor de corriente alterna que produciría en un resistor el mismo efecto de calentamiento que una corriente continua. Los voltímetros y amperímetros están diseñados para medir valores rms de la corriente o la tensión.
  • 4.
  • 5. Corriente alterna en elementos de circuito I. Corriente alterna en una resistencia La tensión aplicada y la corriente están en fase Para calcular la corriente en el circuito aplicamos la L.K.V
  • 6. Notación fasorial La corriente y el voltaje pueden representarse mediante vectores bidimensionales llamados fasores . Podemos representar la caída de potencial en una resistencia como un vector de módulo V R , que forma un ángulo  con el eje X El valor instantáneo de la caída de tensión es la componente x del vector V R , que gira en sentido antihorario con una velocidad  . Combinar cantidades sinusoidales con diferencias de fase utilizando fasores se convierte en una suma de vectores A cos(  t-   ) Fasor A B cos(  t-   ) Fasor B Uso de los fasores Cualquier función A cos(  t-  ), será la componente x de un fasor que forma un ángulo (  t-  ) con el eje x
  • 7. Representación de fasor de voltaje AC y de la corriente Un fasor (vector rotatorio ) de longitud V 0 y una frecuencia ω tiene un componente en “x” igual al voltaje AC . Un fasor similar puede representar la corriente. El ángulo entre los fasores voltaje y corriente es el adelanto/retraso entre la corriente y el voltaje. i = I 0 cos ω t Corriente instantanea
  • 8.
  • 9. Circuito AC que contiene solamente la resistencia R donde: V R 0 = I 0 R
  • 10. P = I rms R 2
  • 11. Cada medidor da valores rms Una fuente de potencia de ca produce un voltaje máximo V máx = 100 V. Esta alimentación de potencia se conecta a un resistor de 24 Ω y se miden la corriente y el voltaje en el resistor con un amperímetro y un voltímetro de ca ideales, como en la figura. ¿Cuáles son los valores que registra cada medidor?
  • 12. Un amplificador de audio, representado por medio de la fuente de ca y de un resistor en la figura, entrega a un altavoz voltaje alterno a frecuencias de audio. Si el voltaje de salida tiene una amplitud de 15.0 V, R= 8.20 Ω , y el altavoz es equivalente a una resistencia de 10.4 Ω , ¿cuál es la potencia promedio en el tiempo que se le entrega?
  • 13. Las tres lámparas están en paralelo La figura muestra tres lámparas conectadas a un suministro de voltaje doméstico de 120 V ca (rms). Las lámparas 1 y 2 tienen focos de 150 W y la lámpara 3 tiene un foco de 100 W. Encuentre la corriente rms y la resistencia de cada foco.
  • 14. Circuito AC que contiene solamente la inductancia L Para calcular la corriente en el circuito aplicamos la L.K.V
  • 15. Circuito AC que contiene solamente la inductancia L El voltaje se adelanta 90º a la corriente
  • 16. En el punto a la corriente comienza a incrementar en la dirección positiva En este instante la rapidez de cambio de la corriente está en un máximo y, por ende, el voltaje a través del inductor también está a un máximo Conforme la corriente aumenta entre los puntos a y b , di/dt disminuye en forma gradual hasta que alcanza cero en el punto b . Como resultado, el voltaje a través del inductor está disminuyendo durante este mismo intervalo de tiempo.
  • 17.
  • 18.
  • 19. a) b) En un circuito de ca puramente inductivo, como en la figura, Vmax = 100 V. a) Si la corriente máxima es 7.5 A a 50 Hz, calcule la inductancia L. b) ¿A qué frecuencia angular ω la corriente máxima es 2.5 A? X L =  L
  • 20. Circuito AC que contiene solamente un capacitor C El voltaje retrasa a la corriente en 90º
  • 21. El voltaje retrasado con corriente en 90º Circuito AC que contiene solamente un capacitor C
  • 22.
  • 23. Un capacitor de 98.0 pF está conectado a un suministro de potencia de 60.0 Hz que produce un voltaje rms de 20.0 V. ¿Cuál es la carga máxima que aparece en cualesquiera de las placas del capacitor?
  • 24. a) ¿Para qué frecuencias lineales un capacitor de 22.0 μ F tiene una reactancia por debajo de 175 Ω ? b) Sobre este mismo intervalo de frecuencia, ¿cuál es la reactancia de un capacitor de 44.0 μ F?
  • 25. Relaciones RMS Resistencia Reactancia Capacitiva Reactancia Inductiva La unidad de la resistencia y de la reactancia es ohmios.
  • 26. Potencia Resistencia Capacitancia Inductancia La energía disipada en un resistor se convierte al calor. El condensador es un dispositivo de almacenaje de la energía . Durante el ciclo la energía se almacena temporalmente en el campo eléctrico . Por lo tanto, la potencia no es una potencia verdadera sino potencia reactiva llamada en unidades de voltio-amperio-reactivo (VAR). El inductor es un dispositivo de almacenaje de la energía . Durante el ciclo AC la energía se almacena temporalmente en el campo magnético La potencia no es potencia verdadero sino reactiva en unidades VAR.
  • 27. Impedancia Z de un circuito Es la relación de la amplitud de voltaje en un circuito a la amplitud de corriente en el circuito
  • 28. Una persona está trabajando cerca del secundario de un transformador, como se muestra en la figura. El voltaje primario es 120 V a 60 Hz. La capacitancia C i , que es la capacitancia entre la mano y el devanado secundario, es 20.0 pF. Suponiendo que la persona tiene una resistencia de cuerpo a tierra Re = 50.0 k Ω . determine el voltaje rms a través del cuerpo. Sugerencia: Redibuje el circuito con el secundario del tranformador como una fuente de ca simple.
  • 29. Circuito RLC en Serie Solamente una corriente en la conexión de serie utilizada como referencia. V R e I están en fase , V L adelanta la corriente en 90º y V C se retrasa a la corriente en 90º Voltaje total - los fasores se suman de la misma manera que los vectores. La misma relación para valores RMS Impedancia en ohms. Z
  • 30. ELICE
  • 31.  
  • 32.  
  • 33. Factor de Potencia, Potencia Real y reactiva Factor de potencia = pf =cos  Solamente los elementos resistivos disipan energía. Los elementos reactivos almacenan energía temporalmente en una parte del ciclo AC . Esta energía se devuelve en otra parte del ciclo . Sin embargo, las fuente de energía y otros equipos tal como transformadores deben poder manejar el VA máximo requerido .
  • 34. f 0 frecuencia de resonancia Factor de Calidad
  • 35. La fuente de voltaje en la figura tiene una salida V = (100 V) cos( 1000t ). Determine a) la corriente en el circuito y b) la potencia suministrada por la fuente, c) Muestre que la potencia disipada en el resistor es igual a la potencia suministrada por la fuente. X L =  L X L = 1000(50x10 -3  Ω
  • 36. La fuente de voltaje en la figura tiene una salida V = (100 V) cos( 1000t ). Determine a) la corriente en el circuito y b) la potencia suministrada por la fuente, c) Muestre que la potencia disipada en el resistor es igual a la potencia suministrada por la fuente.
  • 37. Un voltaje de ca de la forma v = (100 V) sen(1000t) se aplica a un circuito RLC en serie. Si R = 400 Ω , C= 5.0 μ F, y L = 0.50 H, encuentre la corriente máxima y la potencia promedio disipada en el circuito. X L =  L
  • 38. Un resistor de 80 Ω , un inductor de 200 mH y un capacitor de 0.150 μ F se conectan en paralelo a través de una fuente de 120 V (rms) que opera a 374 rad/s. a) Calcule la corriente rms en el resistor, inductor y capacitor b) Cuál es la corriente rms entregada por la fuente , c) Cuál es la frecuencia resonante del circuito
  • 39.  
  • 40. 12. 8 Transformadores Un transformador es un dispositivo utilizado para aumentar o disminuir el voltaje en un circuito sin pérdida apreciable de potencia. Consta de dos bobinas arrolladas sobre un núcleo de hierro. Autores Mar Artigao Castillo, Manuel Sánchez Martínez Dpto de Física Aplicada, Escuela Politécnica Superior de Albacete (UCLM) Primario Secundario El flujo que atraviesa cada espira en ambos arrollamientos es el mismo, luego la tensión que aparece en el secundario es Comparando las dos ecuaciones Transformador Reductor Transformador Elevador
  • 41.  
  • 42. Si colocamos una resistencia de carga en el secundario, aparecerá una corriente I 2 en fase con V 2 y aparecerá un flujo adicional proporcional a N 2 I 2 Autores Mar Artigao Castillo, Manuel Sánchez Martínez Dpto de Física Aplicada, Escuela Politécnica Superior de Albacete (UCLM) Como el flujo en el primario debe tener el mismo ritmo de variación al estar conectado a una fem externa, debe aparecer una corriente I 1 en el primario de forma que Si no existen pérdidas, se debe cumplir que Uso de los transformadores Transporte de energía eléctrica con pérdidas mínimas de energía por efecto Joule utilizando alto voltaje y baja corriente.
  • 43.  
  • 44. La corriente total necesaria para Albacete sería de 700.000 A, para lo cual se necesitarían gruesos cilindros de cobre con grandes pérdidas. Dentro de la ciudad se sitúan transformadores que reducen el valor del voltaje hasta 10.000 V, por ejemplo. Cerca de las casa se sitúan nuevos transformadores que reducen el voltaje de nuevo hasta 220 V. Debido a esta facilidad para aumentar o reducir el voltaje de la corriente alterna, se utiliza este tipo de corriente y no la corriente continua. Autores Mar Artigao Castillo, Manuel Sánchez Martínez Dpto de Física Aplicada, Escuela Politécnica Superior de Albacete (UCLM) Ejemplo: En Albacete, con una población de 100.000 habitantes, si suponemos que cada uno consume una potencia media de 1.5 kW, se necesita para cada persona una corriente Si se utilizan transformadores de alta (elevadores) para transportar la potencia, la corriente necesaria se reduce a
  • 45. Hallar la corriente máxima y el ángulo de desfase. Hallar también la potencia media suministrada por la f.em. Datos: Vo = 100 V, R= 1 W, L=0.003 H, C=0.002 F,  =120  rad/s Nodo b a c b i L i C i R
  • 46. Fasores se suman como vectores i 0
  • 47.  
  • 48.