• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
027 Scomposizione E Prodotti Notevoli
 

027 Scomposizione E Prodotti Notevoli

on

  • 14,128 views

 

Statistics

Views

Total Views
14,128
Views on SlideShare
14,053
Embed Views
75

Actions

Likes
0
Downloads
29
Comments
0

6 Embeds 75

http://www.silviocilloco.it 41
http://www.gandhinarni.it 9
http://www.slideshare.net 8
http://vivilamatematica.blogspot.de 7
http://vivilamatematica.blogspot.it 6
http://vivilamatematica.blogspot.com 4

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    027 Scomposizione E Prodotti Notevoli 027 Scomposizione E Prodotti Notevoli Presentation Transcript

    • LA SCOMPOSIZIONE DI POLINOMI IN FATTORI Profssa Porretti
    • SCOMPORRE UN POLINOMIO IN FATTORI SIGNIFICA ESPRIMERLO SOTTO FORMA DI PRODOTTO DI POLINOMI DI GRADO INFERIORE Che cos'è la scomposizione? MA A COSA SERVE LA SCOMPOSIZIONE?
    • RACCOGLIMENTO A FATTOR COMUNE Il raccoglimento a fattor comune si applica quando esiste un fattore comune a tutti i termini del polinomio. ESEMPI: ax + bx + cx + dx = x (a + b + c + d) 6x³y 4 + 3x 4 y – 12x²y 5 = 3x²y (2xy³ + x² - 4y 4 )
    • IL RACCOGLIMENTO PARZIALE Il raccoglimento parziale consiste nel raggruppare a due a due, o a tre a tre, i termini del polinomio in modo da trovare due fattori uguali da raccogliere ancora. ES.: a x + a y + b x + b y = a (x+y) +b (x+y) = (x+y) (a+b)
    • Quadrato di un binomio Il quadrato di un binomio è uguale alla somma del quadrato del primo termine, del quadrato del secondo termine e del doppio prodotto del primo termine per il secondo. Nel polinomio da scomporre si dovrà riconoscere il quadrato del primo termine, il quadrato del secondo termine e il doppio prodotto del primo per il secondo. (a + b)²= a²+ b²+ 2ab Esempio: x 4 y 2 -4x 2 yz 3 +4z 6 = (x 2 y-2z 3 ) 2
    • Il quadrato di un trinomio Il quadrato di un trinomio è uguale alla somma del quadrato del primo termine, del quadrato del secondo, del quadrato del terzo, del doppio prodotto del primo termine per il secondo, del doppio prodotto del secondo termine per il terzo e del doppio prodotto del primo per il terzo termine. Anche in questo caso, dato il polinomio, si dovranno riconoscere nei suoi termini, se ciò è possibile, i singoli elementi del quadrato di un trinomio. (a+b+c) ²= a²+b²+c²+2ab+2bc+2ac Esempio: (x 6 +y 8 + z 2 -2 x 3 y 4 + 2 x 3 z- 2 y 4 z) = (x 3 -y 4 + z) 2
    • DIFFERENZA DI DUE QUADRATI La differenza di due quadrati è uguale alla somma delle loro basi per la loro differenza. a²-b² = (a+b)(a-b) Moltiplicando (a+b) per (a-b) possiamo verificare l’esattezza di questa regola. (a²-ab+ab-b²) e cioè: a²-b²
    • Il cubo di un binomio Il cubo di un binomio è uguale alla somma del cubo del primo termine, del cubo del secondo termine, del triplo prodotto del quadrato del primo termine per il secondo termine e del triplo prodotto del quadrato del secondo termine per il primo termine. (a+b)³= a³+b³+3a²b+3ab² infatti: (a+b) 3 = (a+b)²(a+b) = (a²+b²+2ab)(a+b) = = (a³+a²b+ab²+b³+2a²b+2ab²) = a³+b³+3a²b+3ab²
    • Il cubo di un binomio Dovendo scomporre un polinomio, si dovranno individuare tra i suoi termini, se possibile, gli elementi che compongono il cubo di un binomio. Esempio: x 6 -8y 3 -6x 4 y+12x 2 y 2 = (x 2 -2y) 3
    • Somma di cubi Si ha la seguente regola: a³+b³ = (a+b) (a²-ab+b²) Si può verificare l’esattezza di questa uguaglianza moltiplicando (a+b) per (a²-ab +b²) Si otterrà: (a³-a²b + ab²+a²b - ab²+ b³) cioè: a 3+ b 3
    • DIFFERENZA DI CUBI Si applica la seguente formula: a³-b³ = (a-b)(a²+ab+b²) Questa regola può essere verificata moltiplicando (a-b) per (a²+ab+b²) Si otterrà il seguente polinomio: (a³ + a²b + ab² - a²b - ab² - b³) e cioè: a 3 -b 3
    • IL TRINOMIO PARTICOLARE Un altro tipo di scomposizione è quella del trinomio particolare di secondo grado del tipo ax²+bx+c. Se a=1 basta trovare due numeri che sommati diano come risultato b e moltiplicati diano come risultato c. Esempio: x²+5x+6=(x+2)(x+3) In questo caso è possibile effettuare questo tipo di scomposizione in quanto 3 più 2 dà come risultato 5 (il coefficiente di x) e 3 moltiplicato per 2 dà come risultato il termine noto.
    • IL TRINOMIO PARTICOLARE Se a è diverso da 1 la scomposizione è più complessa e conviene, se è possibile, ricorrere al raccoglimento parziale, dopo aver espresso il temine bx come somma (o differenza) di due termini scelti opportunamente. Ad esempio: 2x²+5x+3 = 2x²+2x+3x+3 =2x(x+1)+3(x+1) = (x+1)(2x+3) Applicazione della formula risolutiva Altrimenti si può ricorrere alla
    • Scomposizione del trinomio di secondo grado con la formula risolutiva ax²+bx+c = a(x-x 1 )(x-x 2 )
    • Applicando la regola di Ruffini si effettua la divisione di un polinomio per un binomio del tipo (x-a) . Se si ottiene resto 0 significa che il polinomio è divisibile per (x-a) E’ stato perciò possibile ottenere la seguente scomposizione: x ³-4x²+x+6 = (x+1)(x ²-5x+6) Regola di Ruffini Come si ottiene ‘a’? Come si può calcolare il resto prima di applicare la regola di Ruffini ? 1 -4 1 6 -1 -1 5 -6 1 -5 6 0
    • TEOREMA DEL RESTO Con il teorema del resto siamo in grado di capire se un polinomio dato è divisibile per il binomio (x-a). Ciò è possibile sostituendo la “a” alla x nel polinomio dato: il risultato che si ottiene è il resto della divisione del polinomio per il binomio (x-a). Se il resto è = 0 il polinomio è divisibile per (x-a). Possiamo verificare l’esattezza di questa teorema applicandolo al polinomio della precedente diapositiva. Sostituendo -1 a x nel polinomio x³-4x²+x+6 otteniamo: -1-4-1+6 = 0
    • A CHE COSA SERVE LA SCOMPOSIZIONE? La scomposizione serve a risolvere le equazioni di grado superiore al secondo trasformandole, mediante la legge di annullamento del prodotto , in equazioni di primo e di secondo grado. Serve inoltre a determinare il minimo denominatore comune di una somma di frazioni algebriche .
    • ESEMPIO: Affinché il polinomio: -6X 4 -19X 3 +21X 2 +76X+12 sia divisibile per (x-a) i possibili valori di a sono i seguenti, cioè i divisori del termine noto: ±1, ±2, ±3, ±4, ±6, ±12 COME SI TROVA 'a'? Se il polinomio ha coefficienti interi, il valore di ‘a’ può essere trovato tra i divisori del termine noto divisi per i divisori del primo coefficiente.
    • LEGGE DI ANNULLAMENTO DEL PRODOTTO La legge di annullamento del prodotto dice che un prodotto è uguale a zero se e solo se uno dei fattori è uguale a zero. a * b=0 a=0  b=0 Esempio: Da (3x-2)(2x+1)=0 si ricava : x= -1/2  x=2/3 e viceversa
    • FINE Profssa Porretti