Teoria General De Sistemas

181,257 views
180,728 views

Published on

9 Comments
30 Likes
Statistics
Notes
No Downloads
Views
Total views
181,257
On SlideShare
0
From Embeds
0
Number of Embeds
2,497
Actions
Shares
0
Downloads
4,610
Comments
9
Likes
30
Embeds 0
No embeds

No notes for slide

Teoria General De Sistemas

  1. 1. UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS (Universidad del Perú, Decana de América) TEMA: “TEORÍA GENERAL DE SISTEMAS” CURSO: NUEVAS TECNOLOGIAS DE LA INFORMACION Y COMUNICACIÓN PROFESOR: AQUILES BEDRIÑANA ALUMNOS: ALAYO ROSALES HERMES HERNAN 08090002 CAMERO CARDENAS MAURO 08090327 FLORES LAZARO MILAGROS DE JESUS 08090080 LÉVANO FIGUEROA MAGDALENA KATHERINE 08090360 OSPINAL GUERRERO EVELYN 08090201 REMIGIO AQUINO ERNESTO FLORIAN 08090344 SOLORZANO REQUENA PEDRO 08090069 LOZANO CHAUCA CESAR DAVID 04090286
  2. 2. TEORIA GENERAL DE SISTEMAS INDICE 1.- Resumen........................................02 2.- Finalidad de la TGS............................04 3.- Aportes Metodológicos y Semánticos de la TGS a la Investigación Científica ............................................... 08 4.- En qué consiste el pensamiento sistémico........25 5.- El enfoque cibernético de la administración moderna 29 6.- Aplicación práctica de las herramientas conceptuales de la TGS ................................................ 34 7.- Realimentación ................................................... 34 8.- Realimentación negativa ................................................... 35 9.- Realimentación positiva ................................................... 37 10.- Entropía ................................................... 39 11.- Negentropia ................................................... 41 12.- Recursividad ................................................... 43 2
  3. 3. TEORIA GENERAL DE SISTEMAS 13.- Isomorfismo ................................................... 48 14.- Homomorfismo ................................................... 52 15.- Caja negra ................................................... 53 16.- Homeostasis ................................................... 59 17.- Teleología ................................................... 65 18.- Equifinalidad ................................................... 72 19.- Ejercicios sobre insumo-producto de las sistemas ................................................... 76 20.- Mapa conceptual ................................................... 88 21.- Palabras clave ................................................... 89 22.- Bibliografía ................................................... 92 Mapa conceptual 3
  4. 4. TEORIA GENERAL DE SISTEMAS http://cmapspublic.ihmc.us/servl et/SBReadResourceServlet?rid=122 2745706390_700459520_23337&partN ame=htmltext 4
  5. 5. TEORIA GENERAL DE SISTEMAS Resumen  Como primer punto está La finalidad de la Teoría General de Sistemas y esta es permitir manejar bien los conceptos y marco teórico para su buen manejo dentro de una organización y los sistemas, la cual La Teoría Genera de Sistemas va a distinguir el sistema, el suprasistema: (medio del sistema) (familia extensa, amigos, vecinos) y los subsistemas: componentes del sistema. Es por ello la finalidad que tiene la TGS.  Segundo punto son los Aportes Metodológicos y Semánticos de la Teoría General de Sistemas a la Investigación Científica, la cual nos va dar las terminologías a tratar en la TGS con sus explicaciones establecidas, en el campo semántico tendremos las siguientes terminologías, ya que las sucesivas especializaciones de las ciencias obligan a la creación de nuevas palabras, estas se acumulan durante sucesivas especializaciones, y estas son : Sistema, Entradas, Proceso, Caja Negra, Salidas, Relaciones (se clasifican en: Simbióticas, Sinérgica, Superflua), Atributos, Contexto, Rango, Subsistemas, Variables, Parámetro, Operadores, Retroalimentación, Homeostasis y entropía, Permeabilidad, entre otros. Y ahora los aportes metodológicos se dividen en tres partes: Jerarquía de los sistemas, Teoría analógica o modelo de isomorfismo sistémico y Modelo procesal o del sistema adaptativo complejo.  Tercer punto es: en qué consiste el pensamiento de sistemas, esto es un modo de pensamiento que contempla el todo y sus partes, es 5
  6. 6. TEORIA GENERAL DE SISTEMAS integrador o sintético y también permite estudiar la conexión que existe entre las diversas disciplinas para predecir el comportamiento de los sistemas.  Cuarto punto: el enfoque cibernético de la administración moderna, esto es una ciencia que se ocupa de los sistemas de control y de comunicación en las personas y en las máquinas, estudiando y aprovechando todos sus aspectos y mecanismos comunes. y en donde dentro de este rubro se definirá no solo el concepto de ello si no también se hablara acerca de otros puntos relevantes que van a concorde con este tema.  Quinto punto esta representada por la aplicación práctica de las herramientas conceptuales de la TGS. La cual consiste en dar conceptos previos y sus casos respectivos por ende se menciona l: retroalimentación (es un mecanismo según el cual una parte de la energía de salida de un sistema o de una maquina regresa a la entrada), al cual se divide en dos partes La retroalimentación negativa y la retroalimentación positiva (casos prácticos), Entropía y neguentropía, recursividad, isomorfismo y homomorfismo, caja negra, Homeostasis y Teleología, equifinalidad (cada cual son sus respectivos ejemplo, en otras palabras todo lo plasmado en la parte teórica se lleva a la practica en esta parte, ya que ello nos permitirá desenvolvernos de una manera adecuada en el ámbito empresarial Y como último punto es la resolución de los ejercicios sobre insumo- producto de los sistemas, la cual no es otra cosa que emplear nuestros conocimientos. Por ende esta monografía nos ha servido como un adiestramiento en la parte teórica como también en casos prácticos. 6
  7. 7. TEORIA GENERAL DE SISTEMAS Finalidad de la Teoría General de Sistemas La Teoría General de Sistemas (T.G.S.) surgió con los trabajos del biólogo alemán Ludwig von Bertalanffy, publicados entre 1950 y 1968. Las T.G.S. no busca solucionar problemas o intentar soluciones prácticas, pero sí producir teorías y formulaciones conceptuales que puedan crear condiciones de aplicación en la realidad empírica. Los supuestos básicos de la teoría general de sistemas son:  Existe una nítida tendencia hacia la integración de diversas ciencias no sociales.  Esa integración parece orientarse rumbo a una teoría de sistemas.  Dicha teoría de sistemas puede ser una manera más amplia de estudiar los campos no-físicos del conocimiento científico, especialmente en las ciencias  Con esa teoría de los sistemas, al desarrollar principios unificadores que san verticalmente los universos particulares de las diversas ciencias involucradas nos aproximamos al objetivo de la unidad de la ciencia.  Esto puede generar una integración muy necesaria en la educación científica 7
  8. 8. TEORIA GENERAL DE SISTEMAS La teoría general de los sistemas afirma que las propiedades de los sistemas no pueden ser descritas significativamente en términos de sus elementos separados. La comprensión de los sistemas solamente se presenta cuando se estudian los sistemas globalmente, involucrando todas las interdependencias de sus subsistemas. La T.G.S. Se fundamentan en tres premisas básicas, a saber:  Los sistemas existen dentro de sistemas. Las moléculas existen dentro de células las células dentro de tejidos, los tejidos dentro de los órganos, los órganos dentro de los organismos, los organismos dentro de colonias, las colonias dentro de culturas nutrientes, las culturas dentro de conjuntos mayores de culturas, y así sucesivamente.  Los sistemas son abiertos. Es una consecuencia de la premisa anterior. Cada sistema que se examine, excepto el menor o mayor, recibe y descarga algo en los otros sistemas, generalmente en aquellos que le son contiguos. Los sistemas abiertos son caracterizados por un proceso de intercambio infinito con su ambiente, que son los otros sistemas. Cuando el intercambio cesa, el sistema se desintegra, esto es, pierde sus fuentes de energía.  Las funciones de un sistema dependen de su estructura. Para los sistemas biológicos y mecánicos esta afirmación es intuitiva. Los tejidos musculares, por ejemplo, se contraen porque están constituidos por una estructura celular que permite contracciones. No es propiamente las TES. , Sino las características y parámetros que establece para todos los sistemas, lo que se constituyen el área de interés en este caso. De ahora en adelante, en lugar de hablar de TES., se hablará de la teoría de sistemas. El concepto de sistema pasó a dominar las ciencias, y principalmente, la administración. Si se habla de astronomía, se piensa en el sistema solar; si el tema es fisiología, se piensa en el sistema nervioso, en el sistema circulatorio, en el sistema digestivo; la sociología habla de sistema social, la 8
  9. 9. TEORIA GENERAL DE SISTEMAS economía de sistemas monetarios, la física de sistemas atómicos, y así sucesivamente. El enfoque sistemático, hoy en día en la administración, es tan común que casi siempre se está utilizando, a veces inconscientemente. La teoría de sistemas penetró rápidamente en la teoría administrativa por dos razones fundamentales: a) Debido a la necesidad de sintetizar e integrar más las teorías que la precedieron, llevándose con éxito cuando se aplicaron las ciencias del comportamiento al estudio de la organización. b) La cibernética y la tecnología informática, trajeron inmensas posibilidades de desarrollo y operación de las ideas que convergían hacia una teoría de sistemas aplicada a la administración. La teoría de la organización y la práctica administrativa han experimentado cambios sustanciales en años recientes. La información proporcionada por las ciencias de la administración y la conducta ha enriquecido a la teoría tradicional. Estos esfuerzos de investigación y de conceptualización a veces han llevado a descubrimientos divergentes. Sin embargo, surgió un enfoque que puede servir como base para lograrla convergencia, el enfoque de sistemas, que facilita la unificación de muchos campos del conocimiento. Dicho enfoque ha sido usado por las ciencias físicas, biológicas y sociales, como marco de referencia para la integración de la teoría organizacional moderna. En particular, la teoría general de sistemas parece proporcionar un marco teórico unificador tanto para las ciencias naturales como para las sociales, que necesitaban emplear conceptos tales como quot;organizaciónquot;, quot;totalidadquot;, globalidad e quot;interacción dinámica; lo lineal es sustituido por lo circular, ninguno de los cuales era fácilmente estudiadle por los métodos analíticos de las ciencias puras. Lo individual perdía importancia ante el enfoque interdisciplinario. El mecanicismo veía el mundo seccionado en partes cada vez más pequeñas, 9
  10. 10. TEORIA GENERAL DE SISTEMAS la teoría de los sistemas veía la realidad como estructuras cada vez más grandes. La Teoría General de Sistemas presentaba un universo compuesto por acúmulos de energía y materia (sistemas), organizados en subsistemas e interrelacionados unos con otros. La Teoría General de Sistemas distingue: a) El SISTEMA b) El SUPRASISTEMA: (medio del sistema) (Familia extensa, amigos, vecinos) c) Los SUBSISTEMAS: componentes del sistema El objetivo de la teoría es la descripción y exploración de la relación entre los sistemas dentro de esta jerarquía. Hay que distinguir quot;sistemaquot; de quot;agregadoquot;. Ambos son conjuntos, es decir, entidades que se constituyen por la concurrencia de más de un elemento; la diferencia entre ambos consiste en que el sistema muestra una organización de la que carecen los agregados. Así pues, un sistema es un conjunto de partes interrelacionadas. En conclusión la teoría general de sistemas en su propósito más amplio, es la elaboración de herramientas que capaciten a otras ramas de la ciencia en su investigación práctica. Por sí sola, no demuestra o deja de mostrar efectos prácticos. Para que una teoría de cualquier rama científica esté sólidamente fundamentada, ha de partir de una sólida coherencia sostenida por la T.G.S. Si se cuentan con resultados de laboratorio y se pretende describir su dinámica entre distintos experimentos, la T.G.S. es el contexto adecuado que permitirá dar soporte a una nueva explicación, que permitirá poner a prueba y verificar su exactitud. Por ello se la encasilla en el ámbito de meta teoría. Aportes Metodológicos y Semánticos de la Teoría General 10
  11. 11. TEORIA GENERAL DE SISTEMAS de Sistemas a la Investigación Científica Bases Epistemológicas de la Teoría General de Sistemas Según Bertalanffy (1976) se puede hablar de una filosofía de sistemas, ya que toda teoría científica de gran alcance tiene aspectos metafísicos. El autor señala que quot;teoríaquot; no debe entenderse en su sentido restringido, esto es, matemático, sino que la palabra teoría está más cercana, en su definición, a la idea de paradigma de Kuhn. El distingue en la filosofía de sistemas una ontología de sistemas, una epistemología de sistemas y una filosofía de valores de sistemas. La ontología se aboca a la definición de un sistema y al entendimiento de cómo están plasmados los sistemas en los distintos niveles del mundo de la observación, es decir, la ontología se preocupa de problemas tales como el distinguir un sistema real de un sistema conceptual. Los sistemas reales son, por ejemplo, galaxias, perros, células y átomos. Los sistemas conceptuales son la lógica, las matemáticas, la música y, en general, toda construcción simbólica. Bertalanffy entiende la ciencia como un subsistema del sistema conceptual, definiéndola como un sistema abstraído, es decir, un sistema conceptual correspondiente a la realidad. El señala que la distinción entre sistema real y conceptual está sujeta a debate, por lo que no debe considerarse en forma rígida. La epistemología de sistemas se refiere a la distancia de la TGS con respecto al positivismo o empirismo lógico. Bertalanffy, refiriéndose a si mismo, dice: quot;En filosofía, la formación del autor siguió la tradición del neopositivismo del grupo de Moritz Schlick, posteriormente llamado Círculo de Viena. Pero, como tenía que ser, su interés en el misticismo alemán, el relativismo histórico de Spengler y la historia del arte, aunado a 11
  12. 12. TEORIA GENERAL DE SISTEMAS otras actitudes no ortodoxas, le impidió llegar a ser un buen positivista. Eran más fuertes sus lazos con el grupo berlinés de la Sociedad de Filosofía Empírica en los años veintitantos; allí descollaban el filósofo-físico Hans Reichenbach, el psicólogo A. Herzberg y el ingeniero Parseval (inventor del dirigible)quot;. Bertalanffy señala que la epistemología del positivismo lógico es fisicalista y atomista. Fisicalista en el sentido que considera el lenguaje de la ciencia de la física como el único lenguaje de la ciencia y, por lo tanto, la física como el único modelo de ciencia. Atomista en el sentido que busca fundamentos últimos sobre los cuales asentar el conocimiento, que tendrían el carácter de indubitable. Por otro lado, la TGS no comparte la causalidad lineal o unidireccional, la tesis que la percepción es una reflexión de cosas reales o el conocimiento una aproximación a la verdad o la realidad. Bertalanffy señala quot;[La realidad] es una interacción entre conocedor y conocido, dependiente de múltiples factores de naturaleza biológica, psicológica, cultural, lingüística, etc. La propia física nos enseña que no hay entidades últimas tales como corpúsculos u ondas, que existan independientemente del observador. Esto conduce a una filosofía ‘perspectivista’ para la cual la física, sin dejar de reconocerle logros en su campo y en otros, no representa el monopolio del conocimiento. Frente al reduccionismo y las teorías que declaran que la realidad no es ‘nada sino’ (un montón de partículas físicas, genes, reflejos, pulsiones o lo que sea), vemos la ciencia como una de las ‘perspectivas’ que el hombre, con su dotación y servidumbre biológica, cultural y lingüística, ha creado para vérselas con el universo al cual está ‘arrojado’ o más bien, al que está adaptado merced a la evolución y la historiaquot;. La filosofía de valores de sistemas se preocupa de la relación entre los seres humanos y el mundo, pues Bertalanffy señala que la imagen de ser humano diferirá si se entiende el mundo como partículas físicas gobernadas por el azar o como un orden jerárquico simbólico. La TGS no acepta ninguna de esas visiones de mundo, sino que opta por una visión heurística. Finalmente, Bertalanffy reconoce que la teoría de sistemas comprende un conjunto de enfoques que difieren en estilo y propósito, entre las cuales se encuentra la teoría de conjuntos (Mesarovic) , teoría de las redes (Rapoport), 12
  13. 13. TEORIA GENERAL DE SISTEMAS cibernética (Wiener), teoría de la información (Shannon y Weaver), teoría de los autómatas (Turing), teoría de los juegos (von Neumann), entre otras. Por eso, la práctica del análisis aplicado de sistemas tiene que aplicar diversos modelos, de acuerdo con la naturaleza del caso y con criterios operacionales, aun cuando algunos conceptos, modelos y principios de la TGS –como el orden jerárquico, la diferenciación progresiva, la retroalimentación, etc. – son aplicables a grandes rasgos a sistemas materiales, psicológicos y socioculturales. APORTES SEMÁNTICOS Las sucesivas especializaciones de las ciencias obligan a la creación de nuevas palabras, estas se acumulan durante sucesivas especializaciones, llegando a formar casi un verdadero lenguaje que sólo es manejado por los especialistas. De esta forma surgen problemas al tratarse de proyectos interdisciplinarios, ya que los participantes del proyecto son especialistas de diferentes ramas de la ciencia y cada uno de ellos maneja una semántica diferente a los demás. La Teoría de los Sistemas, para solucionar estos inconvenientes, pretende introducir una semántica científica de utilización universal.  Sistema: Es un conjunto organizado de cosas o partes interactuantes e interdependientes, que se relacionan formando un todo unitario y complejo. Cabe aclarar que las cosas o partes que componen al sistema, no se refieren al campo físico (objetos), sino más bien al funcional. De este modo las cosas o partes pasan a ser funciones básicas realizadas por el sistema. Podemos enumerarlas en: entradas, procesos y salidas.  Entradas: 13
  14. 14. TEORIA GENERAL DE SISTEMAS Las entradas son los ingresos del sistema que pueden ser recursos materiales, recursos humanos o información. Las entradas constituyen la fuerza de arranque que suministra al sistema sus necesidades operativas. Las entradas pueden ser: - en serie: es el resultado o la salida de un sistema anterior con el cual el sistema en estudio está relacionado en forma directa. - aleatoria: es decir, al azar, donde el término quot;azarquot; se utiliza en el sentido estadístico. Las entradas aleatorias representan entradas potenciales para un sistema. - retroacción: es la reintroducción de una parte de las salidas del sistema en sí mismo.  Proceso: El proceso es lo que transforma una entrada en salida, como tal puede ser una máquina, un individuo, una computadora, un producto químico, una tarea realizada por un miembro de la organización, etc. En la transformación de entradas en salidas debemos saber siempre como se efectúa esa transformación. Con frecuencia el procesador puede ser diseñado por el administrador. En tal caso, este proceso se denomina quot;caja blancaquot;. No obstante, en la mayor parte de las situaciones no se conoce en sus detalles el proceso mediante el cual las entradas se transforman en salidas, porque esta transformación es demasiado compleja. Diferentes combinaciones de entradas o su combinación en diferentes órdenes de secuencia pueden originar diferentes situaciones de salida. En tal caso la función de proceso se denomina una quot;caja negraquot;.  Caja Negra: La caja negra se utiliza para representar a los sistemas cuando no sabemos que elementos o cosas componen al sistema o proceso, pero sabemos que a 14
  15. 15. TEORIA GENERAL DE SISTEMAS determinadas corresponden determinadas salidas y con ello poder inducir, presumiendo que a determinados estímulos, las variables funcionaran en cierto sentido.  Salidas: Las salidas de los sistemas son los resultados que se obtienen de procesar las entradas. Al igual que las entradas estas pueden adoptar la forma de productos, servicios e información. Las mismas son el resultado del funcionamiento del sistema o, alternativamente, el propósito para el cual existe el sistema. Las salidas de un sistema se convierten en entrada de otro, que la procesará para convertirla en otra salida, repitiéndose este ciclo indefinidamente.  Relaciones: Las relaciones son los enlaces que vinculan entre sí a los objetos o subsistemas que componen a un sistema complejo. Podemos clasificarlas en: - Simbióticas: es aquella en que los sistemas conectados no pueden seguir funcionando solos. A su vez puede subdividirse en unipolar o parasitaria, que es cuando un sistema (parásito) no puede vivir sin el otro sistema (planta); y bipolar o mutual, que es cuando ambos sistemas dependen entre si. - Sinérgica: es una relación que no es necesaria para el funcionamiento pero que resulta útil, ya que su desempeño mejora sustancialmente al desempeño del sistema. Sinergia significa quot;acción combinadaquot;. Sin embargo, para la teoría de los sistemas el término significa algo más que el esfuerzo cooperativo. En las relaciones sinérgicas la acción cooperativa de subsistemas semi-independientes, tomados en forma conjunta, origina un producto total mayor que la suma de sus productos tomados de una manera independiente. - Superflua: Son las que repiten otras relaciones. La razón de las relaciones superfluas es la confiabilidad. Las relaciones superfluas aumentan la 15
  16. 16. TEORIA GENERAL DE SISTEMAS probabilidad de que un sistema funcione todo el tiempo y no una parte del mismo. Estas relaciones tienen un problema que es su costo, que se suma al costo del sistema que sin ellas puede funcionar.  Atributos: Los atributos de los sistemas, definen al sistema tal como lo conocemos u observamos. Los atributos pueden ser definidores o concomitantes: los atributos definidores son aquellos sin los cuales una entidad no sería designada o definida tal como se lo hace; los atributos concomitantes en cambio son aquellos que cuya presencia o ausencia no establece ninguna diferencia con respecto al uso del término que describe la unidad.  Contexto: Un sistema siempre estará relacionado con el contexto que lo rodea, o sea, el conjunto de objetos exteriores al sistema, pero que influyen decididamente a éste, y a su vez el sistema influye, aunque en una menor proporción, influye sobre el contexto; se trata de una relación mutua de contexto-sistema. Tanto en la Teoría de los Sistemas como en el método científico, existe un concepto que es común a ambos: el foco de atención, el elemento que se aísla para estudiar. El contexto a analizar depende fundamentalmente del foco de atención que se fije. Ese foco de atención, en términos de sistemas, se llama límite de interés. Para determinar este límite se considerarían dos etapas por separado: a) La determinación del contexto de interés. b) La determinación del alcance del límite de interés entre el contexto y el sistema. 16
  17. 17. TEORIA GENERAL DE SISTEMAS c) Se suele representar como un círculo que encierra al sistema, y que deja afuera del límite de interés a la parte del contexto que no interesa al analista. d) En lo que hace a las relaciones entre el contexto y los sistemas y viceversa. Es posible que sólo interesen algunas de estas relaciones, con lo que habrá un límite de interés relacional. Determinar el límite de interés es fundamental para marcar el foco de análisis, puesto que sólo será considerado lo que quede dentro de ese límite. Entre el sistema y el contexto, determinado con un límite de interés, existen infinitas relaciones. Generalmente no se toman todas, sino aquellas que interesan al análisis, o aquellas que probabilísticamente presentan las mejores características de predicción científica.  Rango: En el universo existen distintas estructuras de sistemas y es factible ejercitar en ellas un proceso de definición de rango relativo. Esto produciría una jerarquización de las distintas estructuras en función de su grado de complejidad. Cada rango o jerarquía marca con claridad una dimensión que actúa como un indicador claro de las diferencias que existen entre los subsistemas respectivos. Esta concepción denota que un sistema de nivel 1 es diferente de otro de nivel 8 y que, en consecuencia, no pueden aplicarse los mismos modelos, ni métodos análogos a riesgo de cometer evidentes falacias metodológicas y científicas. Para aplicar el concepto de rango, el foco de atención debe utilizarse en forma alternativa: se considera el contexto y a su nivel de rango o se considera al sistema y su nivel de rango. Refiriéndonos a los rangos hay que establecer los distintos subsistemas. Cada sistema puede ser fraccionado en partes sobre la base de un elemento común o en función de un método lógico de detección. 17
  18. 18. TEORIA GENERAL DE SISTEMAS El concepto de rango indica la jerarquía de los respectivos subsistemas entre sí y su nivel de relación con el sistema mayor.  Subsistemas: En la misma definición de sistema, se hace referencia a los subsistemas que lo componen, cuando se indica que el mismo esta formado por partes o cosas que forman el todo. Estos conjuntos o partes pueden ser a su vez sistemas (en este caso serían subsistemas del sistema de definición), ya que conforman un todo en sí mismos y estos serían de un rango inferior al del sistema que componen. Estos subsistemas forman o componen un sistema de un rango mayor, el cual para los primeros se denomina macrosistema.  Variables: Cada sistema y subsistema contiene un proceso interno que se desarrolla sobre la base de la acción, interacción y reacción de distintos elementos que deben necesariamente conocerse. Dado que dicho proceso es dinámico, suele denominarse como variable, a cada elemento que compone o existe dentro de los sistemas y subsistemas. Pero no todo es tan fácil como parece a simple vista ya que no todas las variables tienen el mismo comportamiento sino que, por lo contrario, según el proceso y las características del mismo, asumen comportamientos diferentes dentro del mismo proceso de acuerdo al momento y las circunstancias que las rodean.  Parámetro: Uno de los comportamientos que puede tener una variable es el de parámetro, que es cuando una variable no tiene cambios ante alguna circunstancia específica, no quiere decir que la variable es estática ni mucho menos, ya que sólo permanece inactiva o estática frente a una situación determinada. 18
  19. 19. TEORIA GENERAL DE SISTEMAS  Operadores: Otro comportamiento es el de operador, que son las variables que activan a las demás y logran influir decisivamente en el proceso para que este se ponga en marcha. Se puede decir que estas variables actúan como líderes de las restantes y por consiguiente son privilegiadas respecto a las demás variables. Cabe aquí una aclaración: las restantes variables no solamente son influidas por los operadores, sino que también son influenciadas por el resto de las variables y estas tienen también influencia sobre los operadores.  Retroalimentación: La retroalimentación se produce cuando las salidas del sistema o la influencia de las salidas de los sistemas en el contexto, vuelven a ingresar al sistema como recursos o información. La retroalimentación permite el control de un sistema y que el mismo tome medidas de corrección en base a la información retroalimentada. Feed-forward o alimentación delantera: Es una forma de control de los sistemas, donde dicho control se realiza a la entrada del sistema, de tal manera que el mismo no tenga entradas corruptas o malas, de esta forma al no haber entradas malas en el sistema, las fallas no serán consecuencia de las entradas sino de los proceso mismos que componen al sistema.  Homeostasis y entropía: La homeostasis es la propiedad de un sistema que define su nivel de respuesta y de adaptación al contexto. Es el nivel de adaptación permanente del sistema o su tendencia a la supervivencia dinámica. Los sistemas altamente homeostáticos sufren 19
  20. 20. TEORIA GENERAL DE SISTEMAS transformaciones estructurales en igual medida que el contexto sufre transformaciones, ambos actúan como condicionantes del nivel de evolución. La entropía de un sistema es el desgaste que el sistema presenta por el transcurso del tiempo o por el funcionamiento del mismo. Los sistemas altamente entrópicos tienden a desaparecer por el desgaste generado por su proceso sistémico. Los mismos deben tener rigurosos sistemas de control y mecanismos de revisión, reelaboración y cambio permanente, para evitar su desaparición a través del tiempo. En un sistema cerrado la entropía siempre debe ser positiva. Sin embargo en los sistemas abiertos biológicos o sociales, la entropía puede ser reducida o mejor aun transformarse en entropía negativa, es decir, un proceso de organización más completa y de capacidad para transformar los recursos. Esto es posible porque en los sistemas abiertos los recursos utilizados para reducir el proceso de entropía se toman del medio externo. Asimismo, los sistemas vivientes se mantienen en un estado estable y pueden evitar el incremento de la entropía y aun desarrollarse hacia estados de orden y de organización creciente.  Permeabilidad: La permeabilidad de un sistema mide la interacción que este recibe del medio, se dice que a mayor o menor permeabilidad del sistema el mismo será mas o menos abierto. Los sistemas que tienen mucha relación con el medio en el cuál se desarrollan son sistemas altamente permeables, estos y los de permeabilidad media son los llamados sistemas abiertos. Por el contrario los sistemas de permeabilidad casi nula se denominan sistemas cerrados.  Integración e independencia: 20
  21. 21. TEORIA GENERAL DE SISTEMAS Se denomina sistema integrado a aquel en el cual su nivel de coherencia interna hace que un cambio producido en cualquiera de sus subsistemas produzca cambios en los demás subsistemas y hasta en el sistema mismo. Un sistema es independiente cuando un cambio que se produce en él, no afecta a otros sistemas.  Centralización y descentralización: Un sistema se dice centralizado cuando tiene un núcleo que comanda a todos los demás, y estos dependen para su activación del primero, ya que por sí solos no son capaces de generar ningún proceso. Por el contrario los sistemas descentralizados son aquellos donde el núcleo de comando y decisión está formado por varios subsistemas. En dicho caso el sistema no es tan dependiente, sino que puede llegar a contar con subsistemas que actúan de reserva y que sólo se ponen en funcionamiento cuando falla el sistema que debería actuar en dicho caso. Los sistemas centralizados se controlan más fácilmente que los descentralizados, son más sumisos, requieren menos recursos, pero son más lentos en su adaptación al contexto. Por el contrario los sistemas descentralizados tienen una mayor velocidad de respuesta al medio ambiente pero requieren mayor cantidad de recursos y métodos de coordinación y de control más elaborados y complejos.  Adaptabilidad: Es la propiedad que tiene un sistema de aprender y modificar un proceso, un estado o una característica de acuerdo a las modificaciones que sufre el contexto. Esto se logra a través de un mecanismo de adaptación que permita responder a los cambios internos y externos a través del tiempo. Para que un sistema pueda ser adaptable debe tener un fluido intercambio con el medio en el que se desarrolla.  Mantenibilidad: 21
  22. 22. TEORIA GENERAL DE SISTEMAS Es la propiedad que tiene un sistema de mantenerse constantemente en funcionamiento. Para ello utiliza un mecanismo de mantenimiento que asegure que los distintos subsistemas están balanceados y que el sistema total se mantiene en equilibrio con su medio.  Estabilidad: Un sistema se dice estable cuando puede mantenerse en equilibrio a través del flujo continuo de materiales, energía e información. La estabilidad de los sistemas ocurre mientras los mismos pueden mantener su funcionamiento y trabajen de manera efectiva (mantenibilidad).  Armonía: Es la propiedad de los sistemas que mide el nivel de compatibilidad con su medio o contexto. Un sistema altamente armónico es aquel que sufre modificaciones en su estructura, proceso o características en la medida que el medio se lo exige y es estático cuando el medio también lo es. Optimización y sub.-optimización: Optimización: modificar el sistema para lograr el alcance de los objetivos. Suboptimización: es el proceso inverso, se presenta cuando un sistema no alcanza sus objetivos por las restricciones del medio o porque el sistema tiene varios objetivos y los mismos son excluyentes, en dicho caso se deben restringir los alcances de los objetivos o eliminar los de menor importancia si estos son excluyentes con otros más importantes.  Éxito: El éxito de los sistemas es la medida en que los mismos alcanzan sus objetivos. 22
  23. 23. TEORIA GENERAL DE SISTEMAS La falta de éxito exige una revisión del sistema ya que no cumple con los objetivos propuestos para el mismo, de modo que se modifique dicho sistema de forma tal que el mismo pueda alcanzar los objetivos determinados.  Límites: Es la línea que delimita la relación de un sistema con su contexto, determinando hasta donde el contexto es de interés para el sistema. APORTES METODOLÓGICOS a) Jerarquía de los sistemas Al considerar los distintos tipos de sistemas del universo Kennet Boulding (1956) proporciona una clasificación útil de los sistemas donde establece los siguientes niveles jerárquicos: 1. Primer nivel, estructura estática. Se le puede llamar nivel de los marcos de referencia. 2. Segundo nivel, sistema dinámico simple. Considera movimientos necesarios y predeterminados. Se puede denominar reloj de trabajo. 3. Tercer nivel, mecanismo de control o sistema cibernético. El sistema se autorregula para mantener su equilibrio. 4. Cuarto nivel, quot;sistema abiertoquot; o autoestructurado. En este nivel se comienza a diferenciar la vida. Puede de considerarse nivel de célula. 5. Quinto nivel, genético-social. Está caracterizado por las plantas. 6. Sexto nivel, sistema animal. Se caracteriza por su creciente movilidad, comportamiento teleológico y su autoconciencia. 7. Séptimo nivel, sistema humano. Es el nivel del ser individual, considerado como un sistema con conciencia y habilidad para utilizar el lenguaje y símbolos. 8. Octavo nivel, sistema social o sistema de organizaciones humanas constituye el siguiente nivel, y considera el contenido y significado de mensajes, la naturaleza y dimensiones del sistema de valores, la transcripción 23
  24. 24. TEORIA GENERAL DE SISTEMAS de imágenes en registros históricos, sutiles simbolizaciones artísticas, música, poesía y la compleja gama de emociones humanas. 9. Noveno nivel, sistemas trascendentales. Completan los niveles de clasificación: estos son los últimos y absolutos, los ineludibles y desconocidos, los cuales también presentan estructuras sistemáticas e interrelaciones. Jerarquía de la complejidad de los sistemas (Boulding, 1956) Nivel Características Ejemplos Disciplinas relevantes 1. Estructuras Estático Estructuras de Descripción verbal cristal, puentes o pictórica en cualquier disciplina 2. Sistemas Movimiento Relojes, Física, ciencia dinámicos predeterminado(pueden máquinas, el natural clásica simples exhibir equilibrio) sistema solar 3. Mecanismos Control en un ciclo cerrado Termostatos, Teoría de control y 24
  25. 25. TEORIA GENERAL DE SISTEMAS de control mecanismos de cibernética homeostasis en los organismos 4. Sistemas Estructuralmente auto- Flamas, células Teoría del abiertos mantenibles metabolismo 5. Organismos Organizados completamente Plantas Botánica pequeños con partes funcionales, crecimiento y reproducción 6. Animales Un cerebro para guiar el Pájaros y bestias Zoología comportamiento total, habilidad de aprender. 7. Hombre Con autoconciencia, Seres humanos Biología, psicología conocimiento del conocimiento, lenguaje simbólico 8. Sistemas Roles, comunicación, Familias, clubes Historia, sociología, socioculturales transmisión de valores. sociales, antropología, naciones. ciencia del comportamiento 9. Sistemas Irreconocibles La idea de Dios - trascendentales Notas: Las propiedades emergentes se incrementan en cada nuevo nivel. Del nivel 1 al 9: la complejidad se incrementa; es más difícil para un observador externo el predecir el comportamiento; hay una dependencia incremental en decisiones sin programar. Los niveles más pequeños son encontrados en los sistemas más altos - p.e. el hombre muestra todas las características de los niveles 1 al 6 y las propiedades emergentes del nuevo nivel. b) Teoría analógica o modelo de isomorfismo sistémico: Este modelo busca integrar las relaciones entre fenómenos de las distintas ciencias. La detección de estos fenómenos permite el armado de modelos de aplicación para distintas áreas de las ciencias. 25
  26. 26. TEORIA GENERAL DE SISTEMAS Esto, que se repite en forma permanente, exige un análisis iterativo que responde a la idea de modularidad que la teoría de los sistemas desarrolla en sus contenidos. Se pretende por comparaciones sucesivas, una aproximación metodológica, a la vez que facilitar la identificación de los elementos equivalentes o comunes, y permitir una correspondencia biunívoca entre las distintas ciencias. Como evidencia de que existen propiedades generales entre distintos sistemas, se identifican y extraen sus similitudes estructurales. Estos elementos son la esencia de la aplicación del modelo de isomorfismo, es decir, la correspondencia entre principios que rigen el comportamiento de objetos que, si bien intrínsecamente son diferentes, en algunos aspectos registran efectos que pueden necesitar un mismo procedimiento. c) Modelo procesal o del sistema adaptativo complejo Este modelo implica por asociación la aplicación previa del modelo del rango. Dado que las organizaciones se encuentran dentro del nivel 8, critica y logra la demolición de los modelos existentes tanto dentro de la sociología como dentro de la administración. Buckley, categoriza a los modelos existentes en dos tipos: a) aquellos de extracción y origen mecánico, a los que denomina modelo de equilibrio; b) aquellos de extracción y origen biológico, a los que llama modelos organísmicos u homeostáticos. Y dice: quot;...el modelo de equilibrio es aplicable a tipos de sistemas que se caracterizan por perder organización al desplazarse hacia un punto de equilibrio y con posterioridad tienden a mantener ese nivel mínimo dentro de perturbaciones 26
  27. 27. TEORIA GENERAL DE SISTEMAS relativamente estrechas. Los modelos homeostáticos son aplicables a sistemas que tienden a mantener un nivel de organización dado relativamente elevado a pesar de las tendencias constantes a disminuirlo. El modelo procesal o de sistema complejo adaptativo se aplica a los sistemas caracterizados por la elaboración o la evolución de la organización; como veremos se benefician con las perturbaciones y la variedad del medio y de hecho dependen de estasquot;. Mientras que ciertos sistemas tienen una natural tendencia al equilibrio, los sistemas del nivel 8 se caracterizan por sus propiedades morfogénicas, es decir que en lugar de buscar un equilibrio estable tienden a una permanente transformación estructural. Este proceso de transformación estructural permanente, constituye el pre-requisito para que los sistemas de nivel 8 se conserven en forma activa y eficiente, en suma es su razón de supervivencia. EN QUÉ CONSISTE EL PENSAMIENTO DE SISTEMAS Para poder entender que es pensamiento sistémico demos un vistazo como es que aparece: “El Pensamiento sistémico aparece formalmente hace aproximadamente 45 años, a partir de los cuestionamientos que hizo Ludwig Von Bertalanffy sobre la aplicación del método científico en los problemas de la 27
  28. 28. TEORIA GENERAL DE SISTEMAS Biología, debido a que éste se basaba en una visión mecanicista y causal, que lo hacía débil como esquema para la explicación de los grandes problemas que se dan en los sistemas vivos. Este cuestionamiento le llevó a plantear una reformulación global en el paradigma intelectual para entender mejor el mundo que nos rodea, surgiendo formalmente el paradigma de sistemas. El concepto de Pensamiento Sistémico fue acuñado en 1.956 por el profesor Jay Forrester del M.I.T. (Massachussets Institute of Technology). Este pensamiento consiste en que, en lugar de centrarse en cada uno de los componentes del asunto que estudia, identifica cómo esta cuestión está relacionada e inter−actúa con los demás constituyentes del sistema. En el libro Industrial Dynamics de Jay Forrester, se recogen los planteamientos dinámico−sistémicos: Es solamente a través de errores y experiencias costosas que los administradores han sido capaces de desarrollar un juicio intuitivo efectivo. Necesitamos hacer expedito este proceso de aprendizaje... El Pensamiento Sistémico se basa en la percepción del mundo real en términos de totalidades para su análisis Y comprensión… Otro de los investigadores más importantes que han abordado el tema del Pensamiento Sistémico ha sido Peter Senge. Para este autor, una organización en aprendizaje es aquella que se basa en la idea de que hay que aprender a ver la realidad con nuevos ojos, detectando ciertas leyes que nos permiten entenderla y manejarla…” Luego de haber dado a conocer cómo es que aparece el pensamiento sistémico, pasaremos a detallar en qué consiste el pensamiento sistémico. Según Joseph O, Connor EIan McDermott : “El pensamiento sistémico permite estudiar la conexión que existe entre las diversas disciplinas para predecir el comportamiento de los sistemas, ya se trate del sistema de la red viaria, de un sistemas de de creencias, del aparato digestivo, de un equipo de gestión o de una campaña de marketing. ¿Porque es tan importante el pensamiento sistémico?, como hemos dicho anteriormente, cada personas es un sistema que vive en un mundo de sistemas. Todos vivimos en un mundo inmerso en el complejo sistema de la naturaleza y formamos poblaciones y ciudades que funcionan también como sistemas tenemos sistemas mecánicos, como ordenadores, los coches o las cadenas automatizadas de montaje y 28
  29. 29. TEORIA GENERAL DE SISTEMAS producción. Tenemos sistemas políticos, sistemas económicos, y sistemas ideológicos. Cada una de estos sistemas funcionan como un todo en el que se combinan muchas partes distintas…” El isa virtual nos da de entender que el pensamiento sistémico consiste en: “la actitud del ser humano, que se basa en la percepción del mundo real en términos de totalidades para su análisis, comprensión y accionar, a diferencia del planteamiento del método científico, que sólo percibe partes de éste y de manera inconexa... desde el campo de la Biología hizo Ludwing Von Bertalanffy, quien cuestionó la aplicación del método científico en los problemas de la Biología, debido a que éste se basaba en una visión mecanicista y causal, que lo hacía débil como esquema para la explicación de los grandes problemas que se dan en los sistemas vivos…El pensamiento sistémico es integrador, tanto en el análisis de las situaciones como en las conclusiones que nacen a partir de allí, proponiendo soluciones en las cuales se tienen que considerar diversos elementos y relaciones que conforman la estructura de lo que se define como quot;sistemaquot;, así como también de todo aquello que conforma el entorno del sistema definido. La base filosófica que sustenta esta posición es el Holismo (del griego holos = entero)…” En tanto que monografía.com nos dice que: “el Pensamiento Sistémico está basado en la dinámica de sistemas y es altamente conceptual. Provee de modos de entender los asuntos empresariales mirando los sistemas en términos de tipos particulares de ciclos o arquetipos e incluyendo modelos sistémicos explícitos (muchas veces simulados por ordenador) de los asuntos complejos. Es un marco conceptual cuya esencia pretende producir una quot;Metanoiaquot;, un quot;cambio de enfoquequot; y que nos ayuda de dos formas: 1.- A ver interrelaciones entre las partes más que cadenas lineales de causas y efectos. 2.- A ver los procesos de cambio más que fotografías estáticas. 29
  30. 30. TEORIA GENERAL DE SISTEMAS Mientras tu consultor nos da a conocer el pensamiento sistémico como que: “es un modo de pensamiento que contempla el todo y sus partes, así como las conexiones entre éstas… Estudia el todo para comprender las partes. El pensamiento sistémico va mas allá de lo que se muestra como un incidente aislado, para llegar a comprensiones más profundas de los sucesos.” Pero según ilvem: “el pensamiento sistémico integra el pensamiento creativo, el estratégico y el control para lograr que los proyectos se lleven a la práctica” Otra manera que nos explica icc.col.gob.mx acerca del pensamiento sistémico que: “es integrador o sintético, tanto en el análisis de las situaciones como en las conclusiones que nacen para proponer soluciones en las cuales se tienen que considerar diversos elementos y relaciones que conforman la estructura o arquitectura de lo que se define como quot;sistemaquot;, así como también de todo aquello que conforma el entorno del sistema definido. (Visión de sistemas abiertos). La consecuencia de esta nueva perspectiva sistémica es que hace posible ver a la organización ya no como algo que tiene un fin predeterminado (por alguien), como lo plantea el esquema tradicional, sino que dicha organización puede tener diversos fines en función de la forma cómo los involucrados en su destino (usuarios) la ven o la diseñan, en su variedad interpretativa en relación a su medio o contexto.  Estas visiones diversas están condicionadas por los intereses y valores que poseen dichos grupos involucrados (accionistas, empleados, sociedad, etc.), a partir de un interés común básico centrado en la necesidad de la supervivencia o sustentabilidad de la misma.  Así, el Pensamiento sistémico contemporáneo plantea una visión inter y Transdisciplinaria (más allá de las disciplinas) que ayuda a analizar y entender a una empresa y a su medio de manera integral…” Para jmonzo.net: el pensamiento sistémico nos ayuda a entender mejor el mundo complejo y dinámico en que vivimos hoy en día debido a que:  Enfatiza ver el todo (es holístico) haciendo énfasis en las interdependencias. 30
  31. 31. TEORIA GENERAL DE SISTEMAS  Tiene una serie de sencillas reglas que reducen las ambigüedades y clarifican el entendimiento de situaciones dinámicas y complejas.  Cuenta con una serie de herramientas visuales que facilitan la comunicación y la comprensión.  Utiliza un lenguaje circular y no lineal También paisrural nos dice que: “el Pensamiento sistémico es una técnica de pensamiento que se centra en la relación entre las partes que forman un toso con una finalidad.” ENFOQUE CIBERNÉTICO DE LA ADMINISTRACION MODERNA  Definición de la Cibernética Viene del griego kibernytiky, la cibernética es una ciencia que se ocupa de los sistemas de control y de comunicación en las personas y en las máquinas, estudiando y aprovechando todos sus aspectos y mecanismos comunes. 31
  32. 32. TEORIA GENERAL DE SISTEMAS  Orígenes de la cibernética La cibernética se desarrolló como investigación de las técnicas por las cuales la información se transforma en la actuación deseada. Esta ciencia surgió de los problemas planteados durante la Segunda Guerra Mundial a la hora de desarrollar los denominados cerebros electrónicos y los mecanismos de control automático para los equipos militares como los visores de bombardeo. La cibernética contempla de igual forma los sistemas de comunicación y control de los organismos vivos que los de las máquinas. Para obtener la respuesta deseada en un organismo humano o en un dispositivo mecánico, habrá que proporcionarle, como guía para acciones futuras, la información relativa a los resultados reales de la acción prevista. En el cuerpo humano, el cerebro y el sistema nervioso coordinan dicha información, que sirve para determinar una futura línea de conducta; los mecanismos de control y de autocorrección en las máquinas sirven para lo mismo. El principio se conoce como feedback (realimentación), que constituye el concepto fundamental de la automatización.  Principios básicos de la cibernética Según la teoría de la información, uno de los principios básicos de la cibernética establece que la información es estadística por naturaleza y se mide de acuerdo con las leyes de la probabilidad. 32
  33. 33. TEORIA GENERAL DE SISTEMAS En este sentido, la información es concebida como una medida de la libertad de elección implícita en la selección. A medida que aumenta la libertad de elección, disminuye la probabilidad de que sea elegido un determinado mensaje. La medida de la probabilidad se conoce como entropía. De acuerdo con la segunda ley de la termodinámica, en los procesos naturales existe una tendencia hacia un estado de desorganización, o caos, que se produce sin ninguna intervención o control. En consecuencia, de acuerdo con los principios de la cibernética, el orden (disminución de la entropía) es lo menos probable, y el caos (aumento de la entropía) es lo más probable. La conducta intencionada en las personas o en las máquinas exige mecanismos de control que mantengan el orden, contrarrestando la tendencia natural hacia la desorganización.  Fundador de la Cibernética Wiener, Norbert (1894-1964), matemático estadounidense, fundador de la cibernética, el estudio del control y la comunicación en las máquinas, los animales y las organizaciones. Nació en Columbia, Missouri, y estudió en el Tufts College, y en las universidades de Cornell, Harvard, Cambridge, Gotinga y Columbia. 33
  34. 34. TEORIA GENERAL DE SISTEMAS Fue profesor auxiliar de matemáticas en el Instituto de Tecnología de Massachusetts en 1919 y desde 1932 a 1960 profesor titular. Wiener se especializó en matemáticas y en física matemática. Durante la II Guerra Mundial, mientras se dedicaba a la investigación de técnicas de defensa antiaérea, se interesó por el cálculo automático y la teoría de la realimentación. De este modo fundó la ciencia de la cibernética, que trata no sólo del control automático de la maquinaria por computadoras y otros aparatos electrónicos, sino también del estudio del cerebro y del sistema nervioso humano y la relación entre los dos sistemas de comunicación y control. Pienso que la cibernética es lo que nos ha ayudado hasta el día de hoy a mantenernos con las esperanzas de que en el mundo todavía existe algo más y que por ella si que de verdad hay que luchar para no perder la esperanza del todo, así como muchas de las personas que trabajan a diario con la tecnología son las que van originando la mayoría de los cambios en el mundo los cuales pueden ser: (Buenos o Malos)  Propiedades de los sistemas cibernéticos. Las propiedades de los sistemas cibernéticos son los siguientes:  Son excesivamente complejos. Por lo que se estudian a través del concepto de caja negra.  Son probabilísticos. Por lo que deben ser enfocados a través de la estadística. 34
  35. 35. TEORIA GENERAL DE SISTEMAS  Son autorregulados. Deben focalizarse a través de la retroalimentación que garantice la homeostasis  Consecuencias de la cibernética en la administración Automatización. Ultramecanización, superracionalización, procesamiento continuo y control automático, por la retroalimentación de la máquina con su propio producto. Tal automatización ha tenido un impacto socioeconómico profundo, sobre todo en tres actividades: empresas fabriles, las operaciones comerciales y la banca. Gran parte de lo que se lleva a cabo en automatización depende de la robótica, disciplina que estudia el diseño y la aplicación de robots en cualquier campo de actividad humana. Un robot es un mecanismo programable diseñado para aceptar entradas materiales o simbólicas y operar procesos químicos, físicos o biológicos mediante la movilización de materiales según pautas específicas. Informática. La informática está convirtiéndose en una importante herramienta tecnológica a disposición del hombre para promover su desarrollo económico y social mediante la agilización del proceso de decisión y la optimización de la utilización de los recursos existentes. 35
  36. 36. TEORIA GENERAL DE SISTEMAS APLICACIÓN PRÁCTICAS DE LAS HERRAMIENTAS CONCEPTUALES DE LA TGS RETROALIMENTACION: Todo sistema vivo en general posee una característica que los lleva no solo a permanecer (o sobrevivir) sino a crecer o expandirse. 36
  37. 37. TEORIA GENERAL DE SISTEMAS Para poder llevar a cavo esta función es indispensable que se desarrolle una capacidad de adaptación con el medio o entorno que rodea al sistema, es decir que lleguen a poseer los mecanismos necesarios para modificar su conducta a medida que las exigencias del medio lo requieran. Esto significa que el sistema debe estar capacitado para observar ese medio, para estudiar su conducta en relación a él e informarse de los resultados y consecuencias de esa conducta para la existencia y la vida futura del sistema. En otras palabras, debe controlar su conducta, con el fin de regularla de un modo conveniente para su supervivencia. Esto conduce de lleno a examinar la conducta especial de los sistemas: su autocontrol y los mecanismos o comportamientos diseñados para llevar a cabo esta actividad. Específicamente la retroalimentación es un mecanismo según el cual una parte de la energía de salida de un sistema o de una maquina regresa a la entrada. La retroalimentación (del ingles feedback), también se denomina servomecanismo o realimentación, es un subsistema de comunicación de retorno proporcionado por la salida del sistema a su entrada, para alterarla de alguna forma Entradas salidas SISTEMA Retroalimentación La retroalimentación sirve para comparar la forma como un sistema funciona en relación con el estándar establecido para que funcione. Cuando ocurre alguna diferencia (desviación o discrepancia) entre ambos la retroalimentación se encarga de regular la entrada para que la salida se aproxime al estándar establecida. 37
  38. 38. TEORIA GENERAL DE SISTEMAS La retroalimentación es una acción por la cual el efecto (salida) refluye sobre la causa (entrada), ya sea incentivándola o inhibiéndola. Así podemos identificar dos tipos de retroalimentación: la positiva y la negativa. La retroalimentación negativa: Ocurre cuando el sistema se desvía de su camino, la información de retroalimentación advierte este cambio a los centros decisionales del sistema y éstos toman las medidas necesarias para iniciar acciones correctivas que deben hacer retornar al sistema a su camino original. Cuando la información de retroalimentación es utilizada en este sentido, decimos que la comunicación de retroalimentación es negativa. Entonces concluimos que es la acción frenadora e inhibidora de la salida que actúa sobre la entrada del sistema. 38
  39. 39. TEORIA GENERAL DE SISTEMAS 39
  40. 40. TEORIA GENERAL DE SISTEMAS Caso práctico: Se puede dar la situación en donde una empresa tiene planeado un determinado presupuesto a la hora de hacer sus gastos , tiene que siempre mantener ese equilibrio ente sus gastos e ingresos para el buen funcionamiento de ella , pero puede darse el caso al retroinformarse que los gastos están pasando a los ingresos o sea se está haciendo un gasto excesivo por diversas razones por ejemplo producto de ventas que se han estado reduciendo o quizás también la utilización del dinero por los ejecutivos para gastos no relacionados con la empresa . Esto de toda maneras arrojara resultados finales para la empresa, esta tendrá que evaluarlos y tomar las decisiones del caso con el fin de mantener el orden financiero de la empresa, entonces acá se a dado una retroalimentación negativa porque la información de regreso sirvió para inhibir sus acciones con el fin de retomar su equilibrio antes tenido (en este caso el equilibrio financiero). La retroalimentación positiva: Cuando la acción sigue a la recepción de l comunicación de retroalimentación, va dirigida a apoyar la dirección o el comportamiento inicial, tenemos una “retroalimentación positiva”. O en otras palabras como lo indicábamos anteriormente, cuando mantenemos constante la acción y modificamos los objetivos estamos utilizando la retroalimentación positiva. En palabra de Chiavenato es la acción estimuladora de la salida que actúa sobre la entrada del sistema. En la retroalimentación positiva, la señal de salida amplifica y refuerza la señal de entrada. 40
  41. 41. TEORIA GENERAL DE SISTEMAS 41
  42. 42. TEORIA GENERAL DE SISTEMAS Caso práctico: Tenemos una empresa maderera que tiene todo planeado o programado para producir semanalmente 45.000 toneladas de planchas de madera, al cabo de 1 semana se retroinforma a la gerencia de operaciones que la producción real fue de 50.000 toneladas. Esta gerencia decide entonces modificar su objetivo planeado y lo lleva ahora a 50.000 toneladas. La producción se mantiene pero al cabo de 5 semanas vuelve a subir esta vez a 54.000 toneladas. Nuevamente la gerencia modifica sus objetivos planeados y fija esta nueva cifra como meta semanal. Entonces podemos concluir que la conducta que sigue esta gerencia es de apoyar las acciones o las corrientes de entrada del sistema de modo de aumentar siempre la producción.es decir, aplica una retroalimentación positiva. ENTROPIA: la T.G.S. introduce algunos conceptos tomados de las leyes físicas de termodinámica, y que poseen relación con el tipo de información que ingresa, es decir, su equilibrio organizacional en el sistema y su retroalimentación (feed- back). En este sentido surge la idea que en un sistema existe entropía (concepto físico para medir el equilibrio energético). 42
  43. 43. TEORIA GENERAL DE SISTEMAS Este concepto, que resulta llamativo, posee relación con el equilibrio natural de un sistema, especialmente, según la hipótesis, los sistemas están condenados a morir al alcanzar su máxima entropía, por ejemplo, las materias primas al ser procesadas y transformadas en sistemas cerrados tendrán una vida útil que las hará volver a su origen producto del desgaste del tiempo, al momento de iniciar sus desintegración se iniciará su proceso de entropía (ver quot;Introducción a la Teoría General de Sistemasquot; Oscar Bertoglio). Esto significa que todo sistema necesita alimentarse para seguir vivo, pero en esa constante búsqueda de supervivencia se acerca más a su máximo estado de entropía, su desaparición (según algunos ecologistas, ¿seremos capaces de anular el proceso de entropía de la Tierra?) Casos prácticos: Ropa tirada Para ver mejor la relación entre la entropía y el orden, apliquemos lo aprendido a algo más cotidiano. Intuitivamente, ¿qué está más ordenado? ¿la ropa dentro del cajón o la ropa desperdigada por la habitación? El macroestado “ropa dentro del cajón” tiene mucho menos microestados posibles que el macroestado “ropa desperdigada por la habitación” por la sencilla razón de que fuera del cajón existen muchas más posiciones posibles de la ropa; es decir, existen muchos más microestados. Por tanto, podemos decir que “ropa fuera del cajón” tiene más entropía que “ropa dentro del cajón”. El desorden crece En general, si quitamos restricciones a un sistema la entropía crece. Si no ponemos la ropa en el cajón y la vamos tirando por la habitación todo estará más desordenado. Si cogemos un saco de canicas y lo rasgamos 43
  44. 44. TEORIA GENERAL DE SISTEMAS todas las canicas caerán, desordenándose, aumentando sus posiciones posibles y aumentando la entropía. De hecho, hay una ley fundamental de la Naturaleza que dice que en todo proceso natural la entropía crece. Y ahora, que sabemos qué es la entropía, podemos decir que esto es así porque el número de microestados posibles es cada vez mayor. NEGENTROPÍA Negentropía, o sea, la información como medio o instrumento de ordenación del sistema. La negentropía, la podemos definir como la fuerza opuesta al segundo principio de la termodinámica, es una fuerza que tiende a producir mayores niveles de orden en los sistemas abiertos. En la medida que el sistema es capaz de no utilizar toda la energía que importa del medio en el proceso de transformación, está ahorrando o acumulando un excedente de energía que es la negentropía y que puede ser destinada a mantener o mejorar la organización del sistema, la negentropía, entonces, se refiere a la energía que el sistema importa del ambiente para mantener su organización y sobrevivir. La Entropía la podemos relacionar con la materia y sus propiedades, y predice que ésta tiende a desintegrarse para volver a su estado original de caos primordial. La negentropía la podemos relacionar con la conservación de la Energía, que predice que ésta ni disminuye ni aumenta, simplemente se transforma constantemente, y, en el caso de sistemas abiertos, con cualidad negantrópica, aumentando su nivel de organización. En tal sentido se puede considerar la neguentropía como un mecanismo auto- regulador con capacidad de sustentabilidad, es decir con una capacidad y un poder inherente de la energía de manifestarse de incontables formas y maneras. La neguentropía favorece la subsistencia del sistema, usando 44
  45. 45. TEORIA GENERAL DE SISTEMAS mecanismos que ordenan, equilibran, o controlan el caos. Mecanismo por el cual el sistema pretende subsistir y busca estabilizarse ante una situación caótica. Por ejemplo, la homeostasis en los organismos. Según Bertoglio, quot;El sistema cerrado tiene una vida contada, sucumbe ante la entropía creciente. El sistema abierto presenta características tales que está en condiciones de subsistir y aún de eliminar la ley de entropíaquot;. Por tanto, la neguentropía dependerá de lo siguiente, si en un sistema abierto (con corriente de entrada, proceso de conversión y corriente de salida) la energía arrojada es mayor que la energía absorbida se podrá volver a generar un ciclo dinámico, es decir, su organización será evolutiva y no estacionaría, o dicho de otra forma, el sistema abierto podrá seguir avanzando en la medida que renueve sus prácticas a partir de la energía producida, lo cual será asumido como la superación de la entropía o desintegración del sistema, y provocará la neguentropía o la innovación necesaria para la sobrevivencia del sistema CASO PRÁCTICO: En el caso de dos gases puros que no reaccionan químicamente entre sí, que se encuentren encerrados, a la misma presión y temperatura, en sendos recipientes comunicados por una llave de paso, al abrir ésta, las moléculas de cada gas comenzarán a pasar de un recipiente a otro, hasta que sus concentraciones en ambos se igualen. Todo este proceso transcurre sin variación de presión, temperatura o volumen; no se intercambia en él trabajo alguno, ni existe variación de energía, pero ésta se ha degradado en la evolución del sistema desde el estado inicial hasta el final. Es decir, el valor energético de un sistema no depende tan sólo de la materia y la energía que contiene sino de algo más, la entropía, que expresa lo que hay en él de orden o de desorden. La energía se conserva, pero se va degradando a medida que la entropía del sistema aumenta. RECURSIVIDAD Es el hecho de que un sistema esté compuesto de partes con características tales que son a su vez objetos sinérgicos, formando subsistemas-sistemas y suprasistemas. La recursividad es que cada objeto, no importando su tamaño, 45
  46. 46. TEORIA GENERAL DE SISTEMAS tiene propiedades que lo convierten en una totalidad, es decir, en un elemento independiente. Se requiere que cada parte del todo posea, a su vez, las características principales del todo, o sea podemos entender por recursividad el hecho de que un objeto sinergético (un sistema), esté compuesto de partes con características tales que son a su vez objetos sinergéticos (sistemas) según Gigch (2003). Un Subsistema es un sistema alterno al sistema principal (o que es el objeto de estudio y/o enfoque) que se desarrolla en segundo término tomando en cuenta el intercambio de cualquier forma o procedimiento. Un suprasistema es aquel que comprende una jerarquía mayor a la de un sistema principal determinado, enlazando diferentes tipos de comunicación interna y externa. L. Von Bertalanffy se pregunta qué es un individuo. Individuo significa indivisible, pero, como se ha visto, un sistema humano (el hombre) es posible dividirlo en otros sistemas (células). Como conclusión, se puede señalar que los sistemas consisten en individualidades; por lo tanto, son indivisibles como sistemas. Poseen partes y subsistemas pero estos son ya otras individualidades. En éste sentido, el concepto de recursividad va de quot;individuoquot; en quot;individuoquot;, destacándose una jerarquía de complejidad ya sea en forma ascendente o descendente. Recursividad se aplica a sistemas dentro de sistemas mayores. La reducción (o ampliación) no consiste el sumar partes aisladas, sino, en integrar elementos que en si son una totalidad dentro de una totalidad mayor. 46
  47. 47. TEORIA GENERAL DE SISTEMAS Recursividad existe entonces, entre objetos aparentemente independientes, pero la recursividad no se refiere a forma o, para expresarlo gráficamente, a innumerables círculos concéntricos que parten de un mismo punto. No, la recursividad se presenta en torno a ciertas características particulares de diferentes elementos o totalidades de diferentes grados de complejidad. Entonces, el problema consiste en definir de alguna manera las fronteras del sistema (que será un subsistema dentro de un supersistema mayor, de acuerdo con el concepto de recursividad). Encontramos recursividad cuando se dice que cada uno de los campos de la ciencia mencionados son sistemas que a su vez se conectan con otros sistemas ayudándose mutuamente para crear otro sistema mayor. También se encuentra recursividad cuando el avance en el estudio de un objeto crea a otro sistema o subsistema del sistema CIENCIA. También se observa analizando que todos sus componentes producen algo que a su vez retroalimentan a otro u otros componentes, la base de los objetos del sistema es la investigación y esta produce una información que es utilizada por los otros componentes. La recursividad a menudo se utiliza cuando se evalúa algún tipo de problema arbitrariamente complejo, ya que no se restringe la solución a ningún tamaño particular - la función puede simplemente efectuar la recursividad hasta que se haya alcanzado el final del problema se aplica a sistemas dentro de sistemas mayores y a ciertas características particulares, más bien funciones o conductas propias de cada sistema, que son semejantes a la de los sistemas mayores. Y éste puede aplicarse a los diferentes campos del conocimiento como lo son: Administración, Recursos Humanos, Sistemas de Información, etc. Principio de Recursividad: Lo que este principio argumenta es que cualesquier actividad que es aplicable al sistema lo es para el suprasistema y el subsistema. Los sistemas son sinérgicos y también recursivos. Cuando hablamos de totalidades, desde una perspectiva holista, podemos estar refiriéndonos a todo el universo, porque en el fondo esa es la mayor totalidad conocida. Sin 47
  48. 48. TEORIA GENERAL DE SISTEMAS embargo cuando estamos analizando a algún fenómeno humano necesitamos poner límites en algún lado. Ayudados por la Teoría de Sistemas, podemos ubicar aquel “conjunto de partes interrelacionadas” que constituyéndose en un sistema reconocible -porque identificamos sus límites- nos permite analizarlo, describirlo y establecer causas y consecuencias dentro del sistema o entre el sistema y su entorno, lo esencial es tener presente lo que ya se dijo más arriba: que podemos considerar como sistema a cualquier entidad que se muestra como independiente y coherente, aunque se encuentre situada al interior de otro sistema, o bien, aunque envuelva y contenga a otros subsistemas menores, eso es lo que llamamos la recursividad de los sistemas La imagen mostrada representa al modelo de sistema viable(msv) de una organización, con sus unidades operacionales conformando un sistema 1 y un “metasistema” conformado por los sistemas 2, 3, 4 y 5 se observa que si se mezclan los ambientes de cada unidad operacional en un macroambiente, se juntan todas las operaciones (con sus administraciones) dentro de gran círculo, se reúnen los sistemas 2, 3, 4 y 5 para con formar una gran administración (dirección) y se agrega un gran modelo que reúna todos los modelos particulares, se obtiene la figura siguiente: 48
  49. 49. TEORIA GENERAL DE SISTEMAS Como se observa, de nuevo se conforman los elementos fundamentales se conforma un metasistema con los sistemas básicos. Es cuando ya se habla de grandes unidades organizacionales que incluyen la unidad particular que constituye actividades primarias de la organización. De esta manera, lo que se conforma es un sistema de cajas negras dentro de cajas negras que se replican internamente (como el que se observa en las muñecas rusas o en las cajas chinas). En forma gráfica, esto es lo que constituye el principio de recursividad en el modelo de sistema viable: El modelo de sistema viable en un distrito escolar-recursividad estructural. 49
  50. 50. TEORIA GENERAL DE SISTEMAS ISOMORFISMO El término 'isomorfismo' significa etimológicamente 'igual forma', y con ello se quiere destacar la idea según la cual existen semejanzas y correspondencias formales entre diversos tipos de sistemas en otras palabras Isomórfico (con una forma similar) se refiere a la construcción de modelos de sistemas 50
  51. 51. TEORIA GENERAL DE SISTEMAS similares al modelo original. Por ejemplo, un corazón artificial es isomórfico respecto al órgano real : este modelo puede servir como elemento de estudio para extraer conclusiones aplicables al corazón original. El descubrimiento de un isomorfismo entre dos estructuras significa esencialmente que el estudio de cada una puede reducirse al de la otra, lo que nos da dos puntos de vista diferentes sobre cada cuestión y suele ser esencial en su adecuada comprensión. Ejemplo de isomorfismo: Por ejemplo, si X es un número real positivo con el producto e Y es un número real con la suma, el logaritmo ln:X→Y es un isomorfismo, porque ln(ab)=ln(a)+ln(b) y cada número real es el logaritmo de un único número real positivo. Esto significa que cada enunciado sobre el producto de números reales positivos tiene (sin más que sustituir cada número por su logaritmo) un enunciado equivalente en términos de la suma de números reales, que suele ser más simple. Otro ejemplo: si en el espacio E elegimos una unidad de longitud y tres ejes mutuamente perpendiculares que concurren en un punto, entonces a cada punto del espacio podemos asociarles sus tres coordenadas cartesianas, obteniendo así una aplicación f:E→R³ en el conjunto de las sucesiones de tres números reales. Cuando en E consideramos la distancia que define la unidad de longitud fijada y en R³ consideramos la distancia que define la raíz cuadrada de la suma de los cuadrados de las diferencias, f es un isomorfismo. Este descubrimiento fundamental de Descartes permite enunciar cualquier problema de la geometría del espacio en términos de sucesiones de tres números reales, y este método de abordar los problemas geométricos es el corazón de la llamada geometría analítica. Teoría analógica o modelo de isomorfismo sistémico: 51
  52. 52. TEORIA GENERAL DE SISTEMAS Este modelo busca integrar las relaciones entre fenómenos de las distintas ciencias. La detección de estos fenómenos permite el armado de modelos de aplicación para distintas áreas de las ciencias. Esto, que se repite en forma permanente, exige un análisis iterativo que responde a la idea de modularidad que la teoría de los sistemas desarrolla en sus contenidos. Se pretende por comparaciones sucesivas, una aproximación metodológica, a la vez que facilitar la identificación de los elementos equivalentes o comunes, y permitir una correspondencia biunívoca entre las distintas ciencias. Como evidencia de que existen propiedades generales entre distintos sistemas, se identifican y extraen sus similitudes estructurales. Estos elementos son la esencia de la aplicación del modelo de isomorfismo, es decir, la correspondencia entre principios que rigen el comportamiento de objetos que, si bien intrínsecamente son diferentes, en algunos aspectos registran efectos que pueden necesitar un mismo procedimiento. Un mapa puede ser isomórfico de la región que representa. También pueden serlo un objeto en movimiento y una ecuación, o el negativo de una fotografía con su ampliación. Otros isomorfismos incluyen una máquina de naturaleza mecánica, un aparato eléctrico y una cierta ecuación diferencial, todos los cuales pueden ser isornórficos. Por tanto, un aparato eléctrico puede ser un quot;modeloquot; de ecuación diferencial, una computadora analógica. quot;El propósito general más importante de la computadora digital es asombroso justamente porque puede programarse para resultar, isomórfico con cualquier sistema dinámicoquot;.' Los aparatos isomórficos son valores en la ciencia. Una forma puede ser factible en un área en la que la otra es difícil de manipular. Puede demostrarse que el concepto de isomorfismo es susceptible de una, definición exacta y objetiva.. Las representaciones canónicas de dos máquinas son isomórficas si una transformación de uno a uno de los estados de una máquina a la otra, puede convertir la representación de una en la otra. Pero la reclasificación puede tener varios niveles de complejidad; puede que las transformaciones no sean simples, sino complejas. 52
  53. 53. TEORIA GENERAL DE SISTEMAS En administración tomaremos al isomorfismo como la presión que obliga a una empresa a parecerse a otra de la misma región, como una buena oportunidad de aumentar sus funciones comerciales.  Impacto del isomorfismo. El isomorfismo evalúa cómo las empresas toman la decisión de ingresar a los mercados internacionales, cuando ellos saben que las otras empresas se han desempeñado exitosamente. Por ejemplo para determinar la entrada de las empresas colombianas a mercados internacionales se usa la teoría institucional, mientras el desempeño de estas es desconocido, el resultado es el isomorfismo. Con el ejemplo de las empresas colombianas se evaluarán dos proposiciones de DiMaggio y Powell (1983), de la imitación de medianas y pequeñas empresas que están pensando en empezar a exportar y cómo el isomorfismo influye en el número de organizaciones que operan como exportadoras colombianas. El mundo de los negocios que hoy se puede ver es aquel en el cual las organizaciones han empezado a ser más homogéneas; las imitaciones en 53
  54. 54. TEORIA GENERAL DE SISTEMAS prácticas y estructuras juegan un rol muy importante, ya que muchas organizaciones están copiando a sus competidores. El proceso de imitación se hace a medida que una organización es más exitosa, ya que sus competidores tienden a imitarla. Las siguientes dos proposiciones permiten obtener una real conclusión, acerca del objetivo propuesto. Otro ejemplo podemos mencionar que durante casi todo este siglo las multinacionales americanas han difundido practicas de trabajo taylorianas a otros países, el solo hecho que estos países apliquen las practicas del trabajo tayloriano muestra un isomorfismo y así surgen las similaridades estructurales en distintos campos. O también podríamos mencionar como ejemplo que en una organización las labores que realiza el factor humano son vitales, pero la tendencia obliga a disminuir ese esfuerzo humano y cambiarlo por esfuerzo robótico (isomorfismo), lo cual es una solución favorable para la empresa y para los mismos empleados, ya que las tareas rutinarias serán desarrolladas por estos y permitirá optimizar labores que requieran un mayor nivel de raciocinio a los empleados. HOMOMORFISMO Significa que dos sistemas tienen una parte de su estructura igual. Este concepto se aplica en contraposición al anterior, cuando el modelo del sistema ya no es similar, sino una representación donde se ha efectuado una reducción de muchas a una. Es una simplificación del objeto real donde se obtiene un modelo cuyos resultados ya no coinciden con la realidad, excepto en términos probabilísticos, siendo este uno de los principales objetivos del 54
  55. 55. TEORIA GENERAL DE SISTEMAS modelo homomórfico: obtener resultados probables. La aplicación de este tipo de modelo se orienta a sistemas muy complejos y probabilísticos como la construcción de un modelo de la economía de un país o la simulación del funcionamiento de una empresa en su integración con el medio, ejemplos que podrían ser también considerados como cajas negras. Muy pocas veces un modelo es isomórfico de un sistema biológico; generalmente es un homomorfismo: dos sistemas, un sistema biológico y un modelo, para poner por caso, están tan relacionados que el homomorfismo de uno es isomórfico con el homomorfismo del otro. Esta es una relación quot;simétricaquot;; cada uno es un “modeloquot; del otro. Las propiedades que se atribuyen a las máquinas también pueden atribuirse a las cajas negras. Ashby nos dice que a menudo en nuestra vida diaria tratamos con cajas negras; por ejemplo, al montar una bicicleta sin tener conocimiento de las fuerzas interatómicas que cohesionan al metal. Los objetos reales son cajas negras, y hemos estado operando con ellas durante toda nuestra vida “La teoría de la caja negra es simplemente el estudio de las relaciones entre el experimentador y su medio ambiente, cuando se da especial atención al flujo de información, Ashby sugiere que el estudio del mundo real se vuelve el estudio de los traductores. En el tema administrativo se sabe que una empresa tiene interacción con su medio interna y externamente, pero no se sabe a detalle cómo es que se realizan cada uno de sus procesos internos, además estos van cambiando según el tipo de empresa y según el tiempo de observación. Es un claro ejemplo de homomorfismo aunque a esto también se le puede considerar como caja negra. Dentro de un país existen factores económicos que contribuyen a mejorar el nivel de competitividad de muchas empresas, estos pueden ser propiciados mediante la creación de modelos económicos, más estos son probables y no certeros, naturalmente los resultados serán desconocidos hasta que estos repercutan en el nivel de eficiencia de la mayoría de las empresas. 55
  56. 56. TEORIA GENERAL DE SISTEMAS Caja Negra “La caja negra se utiliza para representar a los sistemas cuando no sabemos que elementos o cosas componen al sistema o proceso, pero sabemos que a determinadas entradas corresponden determinadas salidas y con ello poder inducir, presumiendo En teoría de sistemas y física, se denomina caja negra a aquel elemento que es estudiado desde el punto de vista de las entradas que recibe y las salidas o respuestas que produce, sin tener en cuenta su funcionamiento interno. En otras palabras, de una caja negra nos interesará su forma de interactuar con el medio que le rodea (en ocasiones, otros elementos que también podrían ser cajas negras) entendiendo qué es lo que hace, pero sin dar importancia a cómo lo hace. Por tanto, de una caja negra deben estar muy bien definidas sus entradas y salidas, es decir, su interfaz; en cambio, no se precisa definir ni conocer los detalles internos de su funcionamiento. Cuando de un subsistema se conocen sólo las entradas y las salidas pero no los procesos internos se dice que es una caja negra. Un sistema formado por módulos que cumplan las características de caja negra será más fácil de entender ya que permitirá dar una visión más clara del conjunto. El sistema también será más robusto y fácil de mantener, en caso de ocurrir un fallo, éste podrá ser aislado y abordado más ágilmente. En programación modular, donde un programa (o un algoritmo) es divido en módulos, en la fase de diseño se buscará que cada módulo sea una caja negra 56
  57. 57. TEORIA GENERAL DE SISTEMAS dentro del sistema global que es el programa que se pretende desarrollar, de esta manera se consigue una independencia entre los módulos que facilita su implementación separada por un equipo de trabajo donde cada miembro va a encargarse de implementar una parte (un módulo) del programa global; el implementador de un módulo concreto deberá conocer como es la comunicación con los otros módulos (la interfaz), pero no necesitará conocer como trabajan esos otros módulos internamente; en otras palabras, para el desarrollador de un módulo, idealmente, el resto de módulos serán cajas negras. En pruebas de software, conociendo una función específica para la que fue diseñado el producto, se pueden diseñar pruebas que demuestren que cada función está bien resuelta. Dichas pruebas son llevadas a cabo sobre la interfaz del software. Este enfoque produce la ventaja de identificar claramente los sistemas y subsistemas y estudiar las relaciones que existen entre ellos, permitiendo así maximizar la eficiencia de estas relaciones sin tener que introducirnos en los procesos complejos que se encuentran encerrados en una caja negra. Otra ventaja, especialmente en las empresas industriales, es que permite identificar los “cuellos de botellas”, es decir subsistemas que limitan la acción del sistema para lograr sus objetivos; también permite descubrir aquellos sistemas que son críticos. CAJA NEGRA subsistema procesos entradas salidas 57
  58. 58. TEORIA GENERAL DE SISTEMAS EJEMPLOS DE CAJA NEGRA SISTEMA EDUCACIONAL DE UN PAIS: El ejecutivo a través del presupuesto nacional le entrega una corriente de entrada de dinero, de este sistema salen estudiantes con diferentes grados y títulos (secundarios, universitarios, postgraduados. En este proceso la corriente de entrada se transforma en edificios, profesores, personal administrativo, libros, etc. Esta corriente de entrada así transformada procesa personas denominadas estudiantes que salen del sistemas son productos del sistema y (por ejemplo en el caso de los profesores) también llegan a formar parte del equipo del mismo. Es decir el sistema crea parte de su propio potencial. EMPRESA: En la entrada puede considerarse la inversión inicial de fondos y de esas inversiones (planta y equipos) se produce una salida compuesta por varias clases de productos que son distribuidos entre los consumidores como también dividendos que retornan a los inversionistas (sean estos privados o públicos). 58
  59. 59. TEORIA GENERAL DE SISTEMAS En estos casos sólo nos preocupamos por las entradas y salidas que produce no por lo que sucede dentro del sistema, es decir la forma en que operan los mecanismos y procesos internos del sistema y mediante los cuales se producen las salidas. Ejemplo Gráfico de una caja negra En el gráfico observamos un ejemplo del suelo como una caja negra y los principales interrogantes a los que se enfrenta el microbiólogo de suelo 59
  60. 60. TEORIA GENERAL DE SISTEMAS Aplicación práctica en una empresa que ofrece servicios eléctricos y electrónicos a otras empresas: La empresa tiene departamentos (subsistemas) para el desarrollo de sus actividades, y cada departamento cuenta con entradas así como salidas. Por ejemplo las entradas del área que se encarga del Estudio del Proyecto serían las necesidades del cliente, nuevas ideas para el proyecto e incluso proyectos anteriores del que puedan guiarse. A su vez este tendrá salidas que podrían consistir en el prototipo o en un bosquejo de lo que se quiere producir. Así el departamento de Diseño Eléctrico se convierte en otra caja negra que recibe el prototipo, otros modelos, materiales eléctricos y consigue otras salidas. Estudio del El departamento de Programación PLC recibe también diversas entradas Proyecto obteniendo después de un proceso, que bajo el contexto de una caja negra no importa detallarlo ni estudiarlo, las siguientes salidas: Autómatas programables, que son necesarios en empresas que utilizan robots autómatas para la producción de sus productos. Diseño Y así cada departamento interactúa en el medio que lo rodea, tanto en el Eléctrico ambiente interno como externo A continuación la gráfica respectiva del modelo aplicativo deAplicación la caja negra. Programación Informática PLC Instalación Programació Eléctrica n Robots 60
  61. 61. TEORIA GENERAL DE SISTEMAS Este concepto está especialmente referido a los organismos vivos en tanto sistemas adaptables. Los procesos homeostáticos operan ante variaciones de las condiciones del ambiente, corresponden a las compensaciones internas al sistema que sustituyen, bloquean o Homeostasis complementan estos cambios con el objeto de mantener invariante la estructura sistémica, 61 es decir, hacia la conservación de su forma. La
  62. 62. TEORIA GENERAL DE SISTEMAS Etimológicamente el término 'homeostasis' deriva de la palabra griega quot;homeoquot; que significa quot;igualquot;, “similar”, y quot;stasisquot;, en griego στάσις, que significa quot;posiciónquot;, “estabilidad”; y es la característica de un sistema abierto o de un sistema cerrado, especialmente en un organismo vivo, mediante la cual se regula el ambiente interno para mantener una condición estable y constante. Los múltiples ajustes dinámicos del equilibrio y los mecanismos de autorregulación hacen la homeostasis posible. El concepto fue creado por Claude Bernard, considerado a menudo como el padre de la fisiología, y publicado en 1865. Tradicionalmente se ha aplicado en biología, pero dado el hecho de que no sólo lo biológico es capaz de cumplir con esta definición, otras ciencias y técnicas han adoptado también este término. 62

×