Your SlideShare is downloading. ×
Journal of the Ceramic Society of Japan   111mXn664–668i @C
                                                        B@ j
 ...
¬ì› „ ¼             Journal of the Ceramic Society of Japan   111mXn @C
                                                  ...
666                               CbgŠAÌk§»ÉyÚ·Oì̇¬žÉ¨¯é°_CI“YÁÌe¿




Fig. 3. XRD patterns of the precursors depending o...
¬ì› „ ¼                Journal of the Ceramic Society of Japan   111mXn @C
                                               ...
668                                CbgŠAÌk§»ÉyÚ·Oì̇¬žÉ¨¯é°_CI“YÁÌe¿




Fig. 10. Typical examples of yttria ceramics sint...
Upcoming SlideShare
Loading in...5
×

Japanese paper

167

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
167
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
1
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Transcript of "Japanese paper"

  1. 1. Journal of the Ceramic Society of Japan 111mXn664–668i @C B@ j Paper Ÿ¿Äæ›mk§»jy{XOì̇¬žjIP‘°_Ÿ¥ïYÁme¿ ¬ì› „Erã²NÞEî‡ËsÞ E캳sÞEðä«ÍÞEçgCî Þ Þ @­åwHw”¨¿»wÈC184–0002 Œžs¬àäsì¬ 3–7–2 ¨¿ Þ¿¤†@C305–0044 ïé§Â­ÎsÀØ 1–1 Þ E ÞåËZ‰~bNX(”)C304–0005 ï駺Ès¼Jš´R 482–1 Þ EŠects of the Sulfate Ion Exerted on Densiˆcation of Yttria on Precursor Synthetic Takeshi ONODERA, Takayasu IKEGAMI,ÞYoshiyuki YAJIMA,ÞMasayuki KAWAMURA,ÞÞ Masaaki SAKAIÞÞand Yusuke MORIYOSHI Department of Materials Chemistry, Faculty of Engineering, Hosei University, 3–7–2, Kajino­cho, Koganei­shi, Tokyo 184–0002 National Institute for Materials Science, 1–1, Namiki, Tsukuba­shi, Ibaraki 305–0044 Þ ÞOhtsuka Ceramics Inc., 482–1, Hanya, Shimotsuma­shi, Ibaraki 304–0005 Þ Ammonium hydroxide was used at 10‹ as the precipitant to synthesize thin ‰akes of yttrium hydroxide, ag­ C glomerating in a manner resembling houses of card. One mol÷ to 50 mol÷ of ammonium sulfate was added to the yttrium hydroxide. Doping of sulfate ion resulted in yttria particles with round edges, in contrast to undoped yttria particles with sharp edges. The amount of doped sulfer was reduced to S/Y10|3 by calcina­ tions at 1100‹ and to trace by sintering at 1700‹ Doping of 10 mol÷ of ammonium sulfate resulted in the C, C. maximum transparency in those of the yttria ceramics. Transparency of the yttria ceramics related to brittle­ ness of agglomerate of the calcined powder which was evaluated by collapsing tendency of the agglomerates by ultrasonic dispersion. [Received December 24, 2002; Accepted July 24, 2003] Key­words : Yttria, Sulfate ion, Yttrium hydroxide, Low­temperature synthesis, Houses of card, Densiˆcation, Trans­ parency A  . ¾ ֌»w»C99.99÷jðC¾aÜÉÍA“‚jA…iaõƒ CbgŠAͧû»n1)Å èCZû»ÅõwIÙû«ðà òHÆ»CÁ‰Žòjðp¢½DܽC°_CI“ðÜÞ»‡ ÂA‹~iÆÍá¢C¡üܪȢ½ßCċÌÅàP‹»É ¨ÉÍ°_A“‚jE€i iNH4 )2 SO4 Cƒò»w»CÁ‰Ž ߢ§¾xð¾é±ÆªÅ«éDܽCÏM«âÏH«ÉDê òjðp¢½D Ä¢é±Æ™©çCHID ‰“v­õÇÞ¿âŒ[U[Þ¿C BB ²–m‡¬ . ÏM«‹Þ™Ö̘pªúÒ³êÄ¢éD Y(NO3 )3¥6H2O ðƒ…ÉnðµC0.25 mol/m3 Ƶ½…nt §¾CbgŠAÌ»¢Éַ餆ÍCߎɳܴÜÈñ 200 ml ð}Ol`bNX^[‰[Åæ­©­ÍñµÈªçC ªÈ³êÄ¢éD á¦Î Lefever Æ Matsko2)ÍC 3`5 mass÷ zÂP·…Å10‹ CÉÛÁ½D±ÌntÉC¯¶­10‹ CÉÛÁ Ì LiF ðYÁµÄC ^ó†ÅzbgvŒX·éû@ł¢§õ ½ 1 KèÌA“‚jA…200 ml ð 5 ml/min ̬xÅHºµC «ð¦·Ä‹Ìð¾Ä¢éD ±Ì¼ÉàC Greskovich Æ Woods3) OìÌ̾a𶬵½D30 min ©­Íñ۝µ½ãC (NH4)2 Ì10 mol÷Ì ThO2 ðYÁµÄ…f†2000`2150‹ CÅċ· SO4 ð100 ml ̃…ÉnðµC5 ml/min ̬xÅHºµ½D éû@âCTsukuda Æ Muta ÉæéCbgŠAÌÝð2270‹ 4) C ±±ÅC iNH4 )2 SO4 ÍC bgŠ E€ CI“ ÉÎ µÄ 1`50 Å^óċ·éû@™5)`7)ª éDµ©µÈªçC±êç͂ mol÷Ì°_CI“ÉŠ–·éÊƵ½DHºI¹ãÄÑ30 ¢Ä¬·xâCYÁ¨Ì˜pCzbgvŒXâ HIP ™ÌÁ³ min ©­Íñ۝µCAXsŒ[^[Åzøaßµ½D¾að ċðKvÆ·éD»Ì½ßCRXgª‚­ÈÁ½èCÄ‹Ì ôò·é½ßÉCaߎ¿ðƒ…É 4 min ªUµCÄÑaß· Ì`óɧñðó¯½èµCܽYÁ¨Éæè«¿ªáº·é é€ìð 4 ñJèÔµ½DÅIIÉaßµ½Ž¿ðº·C‚ ÈÇCHÆ»ÌãųܴÜÈâ誠Á½D fKXC¬†Å24 h £‡µ½D»wªÍ@ÉæèOìÌ†Ì ÊíÌċ@ÅCæèá·Å§¾Ä‹Ìð¾é½ßÉÍCÄ íXÌ»wíðèʵ½D°_CI“ÌÊÍYf°©¯žªÍ ‹«ÉDê½²–̇¬ªKvÅ éD»Ì‡¬vZXÉÖ •uiLECO »CCS–444LSjÅ°©ðèʵC»Ìlð·Z µÄ³Ü´Üȟ¢8)`13)ªÈ³êC »Ì†ÅC Ikegami ç14),15) µÄß½DÉ_CI“ÌÊÍTŠ`‹_igŠE€iA‹J ͅ_»CbgŠE€Ì᷇¬ÉæèC–Ðó±qªJ[h Š«jzõõx@Ł߽D`Ô͖¸^dq°÷¾iSEME nEXóÉÃWµ½©³‚¢¾a𶬵C±êÉ°_CI“ ú§»ìŠ»CS–5000jÅÏ@µC²– X üñÜiXRDE ðYÁµÄ¼Ä·éû@ÅCDê½Ä‹«ðL·éCbgŠA Philips »CPW–1800jŋ»ŠÌ¯èâYÁ¨CI“Ìu· ²–ª¾çêé±ÆðñµÄ¢éDµ©µOìÌ̇¬ð Ìöxðe­]¿µ½DܽCMªÍ•uiwd@»CTG/ ™Å¾ç©ÉÈÁĢȢ”ªª èCHƻ̽ßÉÍ»ê DTA8120jðp¢ÄOìÌÉÜÜê黇¨Ì¼èÊI¯è çðæè¾mÉ·éKvª éD{¤†ÍC°_CI“ÌYÁ ðsÁ½D ÊÆCbgŠAċÌ̧¾xÌÖWɢ𢵽D Oì̲–ðCW‹RjAû«Åy­Ù®µCÇódCFÉ üêC_fKXC¬†i200 ml/minjɨ¢ÄC5‹ C/min Ì B. À ± ¬x Å 1100‹ Ü Å ¸ · C± Ì · x É 4 h Û  µ Ä ¼ Ä ð s C BA Ž . ¿ ¢CCbgŠA²–ð¾½D¼Ä²–Ì`ÔÍ SEM ÉæèÏ o­´¿ÉÍCÉ_CbgŠE€Z…a¨iY(NO3)3¥6H2OC @µ½DBET äÊÏviBeat Science »CBEAT4201jð 664
  2. 2. ¬ì› „ ¼ Journal of the Ceramic Society of Japan 111mXn @C B@ 665 p¢Äªèµ½äÊÏÌl©ç½Ï±aðß½DܽC± o­nt†ÌÉ_CI“âCYÁµ½°_CI“ðÜñÅ¢é xªzªè•uixbN}“R[‹^[»CLS230jðp¢Ä ±Æªª©Á½Dܽ°_CI“ÌYÁʪÁ·éÆCÉ_ ±xªzðªèµ½D¼Ä²–†Ì°©ÌÊÍCYf°©¯ž CI“ÌÊÍtɸÁÄ¢½D±Ì±ÆÍCYÁµ½°_CI ªÍ•uŁ߽D “ªOì̆ÌÉ_CI“Æu·µ½±Æ𦴵ĢéD BC ċÌm»¢ . }QÉOì̲–ÆCär̽ßɪ赽°_CbgŠE ¼ÄµÄ¾çê½CbgŠA²–ðW‹RjAû«ÅÙ® €ÆÉ_CbgŠE€Ì™¬¸·ºÉ¨¯édʸÈüð¦·D µCà^ðp¢Ä10 MPa Å꟬`µ½ãC120 MPa ÅÅ CtßÅ}ƒÉ¸Ê·éD±Ì¸ÊÍ °_CbgŠE€Í800‹ ³vŒXµÄ¬`Ìð쬵½Dàaª 6 qmm Ìà^Ŭ` ³YÁŽ¿ÅÍFßçê¸C°_CI“ÌYÁʪÁ·éÌ µ½³²ÌÍM@BªÍ•uiTMAEwd@»CTMA– ÉäáµÄå«­ÈÁ½DêûCÉ_CbgŠE€Í350‹ Ct 1700jðp¢ÄC10‹C/min ̙¬¸·ºÅÌc£Cûkðª ß©ç500‹ CtßÉ©¯Ä}ƒÉ¸Êµ½D°_CI“³YÁ èµ½DêûCàaª12 qmm Ìà^ðp¢Ä¬`µ½³²Ì ÌÉ_CI“ªŠÎIɽ¢Ž¿ÅàC¯¶·xÌæŸʵ ÍC ^“OXe“q[^[t«Ì^ó‚·F il€X»C NM– ½D»Ì¸ÊÍ°_CI“ÌYÁÅCÉ_CI“ʪ¸­·é 8jðp¢ÄC1700‹ 2 h ċµ½DċÌ̧xÍA‹L CÅ ÆC¸­µÄ¢­D±Ìæ¤ÉCÉ_CI“ðÜÞOìÌÍÉ fX@ÉæèßC_§x5.031 Mg/m3 2)©çŠÎ§xð _CbgŠE€ÌMªð·xÅCܽ°_CI“ðÜÞOìÌ Zoµ½Dú³ 1 mm ɾʤµ½Ä‹Ì̼ü§ß¦ðª É°_CbgŠE€ÌMªð·xŸʪFßçêé±Æ© õviJasco »CV–570jŪ赽DܽCU±‹‡v‰Y çC°_CI“âÉ_CI“ÍOì̆ɻê¼êªCÉ_ }­õªõªÍ•uiú{Wƒ[Œ‹EAbV…»CIRIS AP CbgŠE€†ÌÉ_CI“â°_CbgŠE€†Ì°_CI HRjÅCċÌÉÜÜêé°©ÌÊðß½D “Ư¶æ¤È«ÅC Oì̆ɶݷé±Æð¦µÄ¢éD } R É O ì Ì Ì X ü ñ Ü Ì ‹ Ê ð ¦ · D 10 ‹ â20‹ ß Ì t C ‹Êyrl@ . s[NÍ°_CI“ÌYÁʪÁ·éÉ]¢C‚px¤ÉV CA Oì̲–m]¿ . tgµÄ¢éD±Ìæ¤Éê”ÌÊÔuªÏ»µÄ¢é±Æ CҬµ½OìÌÌ SEM Ê^ð¦·Dú³ñ15 }PÉ10‹ ÍC°_CI“ÍOìÌ̋»¢Ì éÁÙÈTCgÌÉ_ nm ̖Ðó±qªÝ¢ÉìÊÆ[ÊÅڇµÄJ[hnEX CI“Æu··é±Æð¦µÄ¢éD óÉÃWµCñíÉ©³‚¢¢ðµÄ¢éD±Ì¢Í°_ CB ¼Ä²–m]¿ . CI“YÁµÄà³YÁÅàÏ»ªÈ­CܽYÁÊÉà˶ }SÉ1100‹ Cżĵľ½CbgŠA²–Ì SEM Ê^ð µÈ©Á½D ¦·D°_CI“³YÁ̲–i} 4(aj jÉÍC嫳ª© PÉOìÌÌg¬ªÍ̋Êð¦·DOìÌ̅_»¨Í ÈèÙÈéTCRóÌp£Á½`ó̱qª¬ÝµÄ¢éD »êÉεC°_CI“ðYÁµ½²–i} 4(b), (cj j̱ qÍÛÝðÑÑĨèCÁÙIɱ¬·µ½±qÍÏ@³ê ¸C±aª»ëÁÄ¢½Dƒx̂¢‹»±qÌÊ17) ÍC ÊÌûÊÉæè«¿ªÙÈé½ß½çÈÊðL·é½ÊÌð `¬·é±ÆªmçêÄ¢éDÊÌûÊÅ«¿ªÙÈé±Æ ÍCÁèÌûÊÖWÉ éÊðL·é±q¯mÍCeÕÉ‡Ì µ}¬É¬··éªC é±qÔÅ͇̪ﵭC±¬·ª x¢±ÆðÓ¡·éD°_CI“³YÁ̲–Ép£Á½å¬ ̱qª¬ÝµÄ¢é±ÆÍC±Ì±qʪÙû«ðà± Fig. 1. Typical SEM micrograph showing the morphology of the precursor. Table 1. Chemical Analysis on the Undoped, the 5 mol÷ and the 10 mol÷ SO42|­Doped Precursors Fig. 2. Five weight loss curves of the precursors, yttrium sulfate and yttrium nitrate.
  3. 3. 666 CbgŠAÌk§»ÉyÚ·Oì̇¬žÉ¨¯é°_CI“YÁÌe¿ Fig. 3. XRD patterns of the precursors depending on amount of sulfate ion: (a) undoped, (b) 5 mol÷ SO42|, (c) 10 mol÷ SO42|, (d) 50 mol÷ SO42|. ÆÆêv·éD ܽCK‰X±qðÁM·éƅóÉÈé±Æ©çª©éæ ¤ÉC…ó±qͱqÊÌ«¿ª™ûIÅ éÆ«Éo»· éD·Èí¿C°_CI“ðYÁµ½²–ªÛÝðÑѽ`ó ÅC±qÌ嫳ª»ëÁÄ¢é±ÆÍC°_CI“ª±q ÊÌÙûI«¿ð}§µÄCæè™ûIÉ·é­«ð·é±Æ ð¦µÄ¢éD }TÉ SEM Ê^ã̱q200Â̼aæèß½½Ï±q aÆCäÊÏ̪èlæèZoµ½½Ï±qað¦·D±± Å SEM ±qaÍR[eB“OðµÈ¢ÅBeµ½ SEM Ê^ ©çß½D°_CI“YÁʪ10 mol÷̲–ÍCñÂ̱ qaªÙÚ¯¶l𦵽ªC»Ì¼Ì²–CÁɳYÁâ 50 mol÷YÁ̲–ÍCäÊÏaÌÙ¤ªñíÉå«©Á ½DSEM ±qaæèàäÊÏaÌûªå«¢±ÆÍCä ÊϪèÅp¢½‚fKXªêŸ±qÌÊ·×Äð¢¦È ©Á½±ÆðÓ¡µÄ¨èC꟱q¯mªlbNÉæ苇 Fig. 4. Three SEM micrographs showing morphology of the yt­ µÄ¢é±Æð¦·D±êÉεÄCSEM ±qaÆäÊÏ tria powders calcined at 1100‹ (a) undoped, (b) 1 mol÷ SO42|, C: (c) 10 mol÷ SO42|. aªÙÚ¯¶l𦵽10 mol÷YÁ̲–ÍC꟱qÔÌ ÚGÊϪñíɬ³¢±Æð¦µÄ¢éD µ©µÈªçCSEM Ï@â} 5 ɦµ½±qaÌär©ç ¾¯ÅÍC±qÔÌÃWÌ­³ð]¿Å«È¢D»±ÅC´¹ ±Ìæ¤É°_CI“ÌYÁÊÉæèC±qÌÃWÌ­³É gðÆ˵ȪçCbgŠA²–̱xªzðªèµ½D}U ᢪÝç꽪CYÁʪ10 mol÷Ⱥ̲–É¢ÄÍC ɦ·æ¤ÉC´¹gÌÆ˞Ԫ·­ÈéÉÂêCå«È± SEM Ê^©çÍ»Ìá¢ð¯Ê·é±ÆÍÅ«È©Á½Dµ qa¤Ìªzª­È­ÈèCªzª¬³È±qa¤ÉVtgµ ©µC°_CI“ÌʪsªÅ éÆC±qÊÌÙû«ð Ä¢«C ÃWªöóµÄ¢­lqªª©éD 0.6 ±±ÅC mm È }§·éøʪã­CÙíɬ­¬·µ½lbNª±qðÃW ã̱qðÃW±qÆÝȵC»Ì´¹gÆ˞ÔÉæé±a ³¹½àÌÆl¦çêéDYÁʪ10 mol÷Èã̲–Í}W ª 0.6 mm Èã̱qÌÌÏÏZl i0.6 mmj ðß½D iQ j » (a)ɦ·æ¤ÉC±qÍÛÝðÑÑÄÍ¢éªC±qÔÌ Ì‹Êð}Vɦ·D¯}©çª©éæ¤ÉC³YÁ̲–Í lbNª¬·µÄ¢½D°_CbgŠE€ð1100‹ Cżĵ ´¹gðÆ˵ÄàÃWÌöóÍ ÜèiÜÈ¢ªC°_CI ľ½CbgŠA²–i} 8(bjjàC±qÍÛÝðÑÑÄ¢ “YÁ̲–Í´¹gÆËÉæèCÙÚÁÅ·éDܽC±Ì éàÌÌC±qÔÌlbNͯ}(a)æèXɬ·µÄ¢éD öó̵ⷳÍCe²–ɨ¢Ä·ªFßçêC10 mol÷Y ±Ì±Æ©çC°_CI“ª½­ÈéÆlbN̬·ª¬­È Á̲–ªCÃWÌæ謢öó𦵽DÂÜè10 mol÷Y èCd¢ÃWÆÈé±Æªª©éDÂÜèC°_CI“ÌYÁ Á²–̱qÔÌÃWÍC¼Ì²–Éä×㢱ƪª©éD ÊÍC±qÊÌÙû«ð}§·éªClbN̬·ð Üè
  4. 4. ¬ì› „ ¼ Journal of the Ceramic Society of Japan 111mXn @C B@ 667 Fig. 7. Relations between (100–Q(0.6 mm)) (÷) and ultrasonic Fig. 5. Particle size of yttria dependent on amount of sulfate ion. irradiation time. Fig. 8. SEM micrographs showing morphology of the yttria pow­ ders calcined at 1100‹ (a) 50 mol÷ SO42|, (b) yttrium sulfate. C: Fig. 6. Particle size distributions changed by ultrasonic irradia­ tion of 10 mol÷ SO42|. £iµÈ¢öxÌ10 mol÷ªÅKÅ éD }Xə¬¸·ºÉ¨¯éüûkÈüƬ`§x𦵽D ¬`Ì̧xÍCÃWÌ­³ªÅàã¢10 mol÷YÁ̲– ª CÅ à å« ©Á ½ D } 7 Æ } 9 ð ä r · é Æ ª © é æ ¤ ÉCÃWª­ÅÉÈéÙÇC¬`Ì̧xͬ³­ÈéXüÉ  Á½DܽC´¹gÆËÉæèÃWªöóµâ·¢²–Ù ÇCċÍᢷxÅiÞXüÉ Á½D CC ċÌm]¿ . Fig. 9. Shrinkage curves of yttria powders under CRH sintering }@A É»ê¼ê̲–ðp¢ÄC 1700‹ 2 h ^óċµC CÅ at a heating rate of 10‹ C/min. ú³ 1 mm ɾʤµ½CbgŠAċÌÌÊ^ð¦·Dà WªÅàã­Cċ«ÉDê½°_CI“10 mol÷YÁ̲– ðp¢½Ä‹ÌÍC_§xi5.031 Mg/m3 )2) Ì99.9÷ÜÅ k§»µÄ¨èCċÌðʵÄä†Ì¶šªÍÁ«èÆÇÝ Ì°©ÌcÊÍC°_CI“ð50 mol÷YÁµ½CbgŠAÅ æêéÙÇ̧¾x𦵽D à 7 mass ppb ȺÅC¼ÄâċÅYÁµ½°_CI“ÍÙ ¼Ä²–†Ì°©ÌcÊÍ} A A ɦ·Æ¨èÅ èCċã ÆñÇÈ­ÈéD
  5. 5. 668 CbgŠAÌk§»ÉyÚ·Oì̇¬žÉ¨¯é°_CI“YÁÌe¿ Fig. 10. Typical examples of yttria ceramics sintered at 1700‹ C for 2 h in vacuum: (a) undoped, (b) 1 mol÷ SO42|, (c) 5 mol÷ SO42|, (d) 10 mol÷ SO42|, (e) 20 mol÷ SO42|, (f) 50 mol÷ SO42|. Fig. 12. Optical inline transmission spectra of 1 mm­thick of yt­ tria ceramics. ½D°_CI“ÌYÁÊÍ 10 mol÷ªÅKÅ èC±Ìð Ҭµ ½C bg ŠA²– ÍC ½Ï ±a ªñ 60 nm Æ ÷× ÅC꟱qÌÃWͪñíÉã­Cċ«ÉDê½²–Å  éD±Ì²–ðp¢éÆC1700‹ 2 h Ì^óċÅ‹õÌ C, æɨ¢Ä¼ü§ß¦60÷ÆC‚¢§¾xð¦·Ä‹Ìª» ¢Å«éD i2002N 9 Žæ15ñú{Z‰~bNX¦ïHGV“|WE€É Ä­) References 1) Anderson, R. C., GE Report, NO96–C–141 (1969). 2) Lefever, R. A. and Matsko, J., Mater. Res. Bull., Vol.2, pp. Fig. 11. Amount of sulfur in yttria powders. 865–869 (1967). 3) Greskovich, C. and Woods, K. N., J. Am. Ceram. Soc., Vol. 52, pp. 473–478 (1973). 4) Tsukuda, Y. and Muta, A., J. Ceram. Soc. Japan, Vol. 84, pp. 585–589 (1976) [in Japanese]. »ê¼êÌċÌÉ¢ÄC¼ü§ß¦ðªèµ½‹Êð 5) Dutta, S. K. and Gazza, G. E., Mater. Res. Bull., Vol. 4, pp. 791–796 (1969). }A ɦ·D°_CI“10 mol÷YÁ̲–æè¾½Ä‹Ì B 6) Rhodes, W. H., J. Am. Ceram. Soc., Vol. 64, 13–19 (1981). CÆ¢¤Ä‹·xƵÄÍärIᢷxÅC‹ ÍC1700‹ 7) Toda, G. and Matsuyama, I., J. Jpn. Soc. Powder and Powder õÌæɨ¢Äñ60÷Èã̂¢l𦵽D Metallurgy, Vol. 35, pp. 486–491 (1988) [in Japanese]. 8) Furlong, L. R. and Domingues, L. P., Am. Ceram. Soc. Bull., Vol. 45, pp. 1051–1054 (1966). D ‹ . _ 9) Richardson, K. and Akinc, M., Ceram. Int., Vol. 13, pp. 10‹ CŅ_»CbgŠE€ð‡¬µ½D±êÉ°_CI“ 253–261 (1987). 10) Sordelet, D. J. and Akinc, M., J. Am. Ceram. Soc., Vol. 71, pp. ðYÁµÄ¼Äðs¢CCbgŠA²–ð¾½D±ÌÆ«°_ 1148–1153 (1988). CI“ÌYÁÊðÏ»³¹C»êªCbgŠA²–̲–Á 11) Tool, C. J. J. and Cordfunke, E. H. P., Solid State Ionics, Vol. «Ck§»ÉyÚ·e¿É¢ğ¢µ½‹ÊCȺÌæ¤È 32/33, pp. 691–697 (1989). 12) Micheli, A. L., Dungan, D. F. and Mantese, J. V., J. Am. ‹_ð¾½D Ceram. Soc., Vol. 75, pp. 709–711 (1992). (1) YÁµ½°_CI“ͱqÊÌ«¿ð™ûIÉ·é 13) Saito, N., Matsuda, S. and Ikegami, T., J. Am. Ceram. Soc., ­«ª èC»Ì‹ÊC±qÍÛÝ𦵽D Vol. 81, pp. 2023–2028 (1998). 14) Ikegami, T., Mori, T., Yajima, Y., Takenouchi, S., Misawa, (2) °_CI“ÌYÁʪ10 mol÷ÜÅÍC»ÌYÁʪ T. and Moriyoshi, Y., J. Ceram. Soc. Japan, Vol. 107, pp. Á·éÆÃWªÆãÉÈèC10 mol÷ÈãÉÈéÆtÉ­Å 297–299 (1999). ÈÃWÆÈÁ½DYÁµ½°_CI“ÍC¼Äâċ†ÉÙÆ 15) Ikegami, T., Li, J.­G., Mori, T. and Moriyoshi, Y., J. Am. Ceram. Soc., Vol. 85, pp. 1725–1729 (2002). ñÇÁ¸µCċ̆ÉcÁ½°©Í 7 mass ppb ȺŠÁ 16) Holcombe, C. E., Jr., J. Am. Ceram. Soc., Vol. 61, pp. ½D 481–486 (1978). 17) WulŠ, G., Z. Krystallger., Vol. 34, pp. 449–530 (1901). (3) ÃWªÆãÅ éÙÇċ«ªÇ­C§¾xàÇ©Á

×