Your SlideShare is downloading. ×
0
The Evolution Of An Electronic Material
The Evolution Of An Electronic Material
The Evolution Of An Electronic Material
The Evolution Of An Electronic Material
The Evolution Of An Electronic Material
The Evolution Of An Electronic Material
The Evolution Of An Electronic Material
The Evolution Of An Electronic Material
The Evolution Of An Electronic Material
The Evolution Of An Electronic Material
The Evolution Of An Electronic Material
The Evolution Of An Electronic Material
The Evolution Of An Electronic Material
The Evolution Of An Electronic Material
The Evolution Of An Electronic Material
The Evolution Of An Electronic Material
The Evolution Of An Electronic Material
The Evolution Of An Electronic Material
The Evolution Of An Electronic Material
The Evolution Of An Electronic Material
The Evolution Of An Electronic Material
The Evolution Of An Electronic Material
The Evolution Of An Electronic Material
The Evolution Of An Electronic Material
The Evolution Of An Electronic Material
The Evolution Of An Electronic Material
The Evolution Of An Electronic Material
The Evolution Of An Electronic Material
The Evolution Of An Electronic Material
The Evolution Of An Electronic Material
The Evolution Of An Electronic Material
The Evolution Of An Electronic Material
The Evolution Of An Electronic Material
The Evolution Of An Electronic Material
The Evolution Of An Electronic Material
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

The Evolution Of An Electronic Material

707

Published on

The evolution of a ceramic/glass materials system to meet requirements of VLSI semiconductor packages

The evolution of a ceramic/glass materials system to meet requirements of VLSI semiconductor packages

Published in: Career, Technology, Business
0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
707
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
47
Comments
0
Likes
2
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. The Evolution of a Ceramic Materials System for Chip Packaging Dave Kellerman April 27, 2006
  • 2. Acknowledgements <ul><li>Digital Equipment Corporation </li></ul><ul><li>Worcester Polytechnic Institute, Worcester, MA </li></ul><ul><li>Emerson and Cuming Composites, Canton, MA </li></ul><ul><li>EMCA-Remex Products/Ferro </li></ul><ul><li>MIT Lincoln Laboratory, Cambridge, MA </li></ul><ul><li>Teledyne Corporation, Marina-Del-Ray CA </li></ul><ul><li>Circuits Processing Technology (CPT) Carlsbad, CA </li></ul><ul><li>Advanced Materials Laboratory, University of Massachusetts, Lowell, MA </li></ul><ul><li>Damaskos, midwest </li></ul><ul><li>Virginia Polytechnic Institute </li></ul><ul><li>Field Flow Fractionation (Postnova) </li></ul>
  • 3. Materials System Requirements <ul><li>Substrates and Dielectrics for Microwave, VLSI, Wireless applications </li></ul><ul><ul><li>Signals: Low loss (Tan Delta; e’/e’’) AND Low Dielectric Constant (K or Er) </li></ul></ul><ul><ul><ul><li>Frequency range: .5-20+ GHz </li></ul></ul></ul><ul><ul><ul><li>Signal Impedance Control (50 ohms) </li></ul></ul></ul><ul><ul><ul><li>Minimized Signal Propagation Delay </li></ul></ul></ul><ul><ul><ul><li>Minimized Signal Capacitive load </li></ul></ul></ul><ul><ul><ul><li>Minimized Signal Crosstalk </li></ul></ul></ul><ul><ul><ul><li>Minimized Power/ground noise </li></ul></ul></ul><ul><ul><li>Excellent Dimensional Stability (300 I/O and up) </li></ul></ul><ul><ul><li>High Current Carrying Capability for Power and Ground Structures </li></ul></ul><ul><ul><li>Excellent Thermal Capability for higher power dissipation </li></ul></ul>
  • 4. Low Dielectric Constant (K, Er) Low Loss (tan delta, dissipation factor)
  • 5. Dielectric Properties of Ceramic Substrates and Dielectrics <ul><li>Substrate Dielectric Constant Dielectric Loss </li></ul><ul><li>(K or Er) </li></ul><ul><li>92% alumina </li></ul><ul><li>1 MHz 9.0 .0003 </li></ul><ul><li>10 GHz 8.6 .0004 </li></ul><ul><li>96% alumina </li></ul><ul><li>1 MHz 9.8 .0003 </li></ul><ul><li>10 GHz 9.2 .0005 </li></ul><ul><li>Glass+-Ceramic </li></ul><ul><li>1 MHz 5.1 .003 </li></ul><ul><li>10 GHz 4.9 .001-.005 </li></ul><ul><li> NTK, A.-E Riad ISHM95 </li></ul>
  • 6. Candidate Substrate Technologies for Low K <ul><li>MCM-L Laminate Substrates </li></ul><ul><li> Dielectric Dielectric Constant Loss (Tan Delta) </li></ul><ul><li>Epoxy/Glass </li></ul><ul><li>1 MHz 4.0-5.0 <.01 </li></ul><ul><li>1 GHz 4.0 .02 </li></ul><ul><li>10 GHz 4.0 >1 </li></ul><ul><li>TCE High </li></ul><ul><li>Low thermal capability </li></ul><ul><li> source: A. E-Riad et. al.; ISHM 95 </li></ul><ul><li>Polyimide Thin Film </li></ul><ul><ul><li>Low K~3.5 </li></ul></ul><ul><ul><li>High Dielectric Loss (.0X) </li></ul></ul><ul><ul><li>High TCE </li></ul></ul><ul><ul><li>Low thermal capability </li></ul></ul><ul><li>Silica: K~3.8 or Cordierite </li></ul><ul><ul><li>Low K~5 </li></ul></ul><ul><ul><li>Low Loss (.00X) </li></ul></ul><ul><ul><li>TCE dissimilar to 96% alumina </li></ul></ul><ul><ul><li>Expensive Processing </li></ul></ul><ul><ul><ul><li>> 900 o C Firing </li></ul></ul></ul>
  • 7. Thick Film Technology <ul><ul><li>High K: 7.5-8.5 </li></ul></ul><ul><ul><li>Low Loss, High Q </li></ul></ul><ul><ul><li>TCE matched to Silicon </li></ul></ul><ul><ul><li>Easy Processing </li></ul></ul><ul><ul><li>Fine line and Via resolution </li></ul></ul><ul><ul><ul><li>Screen Printed </li></ul></ul></ul><ul><ul><ul><li>Photoimagable </li></ul></ul></ul><ul><ul><li>High Thermal capability </li></ul></ul><ul><ul><li>Integrated Passives </li></ul></ul><ul><ul><li>Approach: Lower Dielectric Constant of Thick Film Dielectric </li></ul></ul><ul><ul><li>ENGINEER THE MICROSTRUCTURE </li></ul></ul>
  • 8. Approach Hollow Microspheres (K=1+) Standard Thick Film dielectric (K=8) Composite Thick Film Dielectric (K=4)
  • 9. Porous Materials <ul><li>Porous Materials </li></ul><ul><li>Porous materials are low K (K gas = 1) </li></ul><ul><li>Need closed cell porosity for hermeticity: </li></ul><ul><ul><li>Hollow Microspheres added to ceramic or PWB laminates </li></ul></ul><ul><li>Digital Equipment Corporation Patented approach (D. Kellerman) </li></ul><ul><ul><li>hollow microspheres(K~1) + ceramic (K~8) </li></ul></ul><ul><ul><li>K ~ 4 </li></ul></ul>
  • 10. Microstructure
  • 11. New Thick Film Dielectric Formulation <ul><li>Thick Film Glasses : From 8.5 to 3.5-4.5 (DEC/EMCA/Material Solutions/ECCM) </li></ul><ul><li>Patents </li></ul><ul><ul><li>4,781,968: “Microelectronic Devices and Methods for Manufacturing Same”, Low constant material. </li></ul></ul><ul><ul><li>4,865,875: Process for low dielectric constant thick film material. </li></ul></ul><ul><ul><li>4,994,302: Process for making low dielectric constant ceramic tape substrates. </li></ul></ul><ul><ul><li>5,178,934: &quot;Microelectronic Devices&quot;, Low dielectric constant thick film devices. </li></ul></ul>
  • 12. Particle Size Distribution <ul><li>Lower the Particle Size Distribution </li></ul><ul><ul><li>Average Diameter: 25 Microns </li></ul></ul><ul><ul><li>Max Diameter: 40 Microns </li></ul></ul><ul><ul><li>Dielectric Thickness: 25-35 Microns each layer </li></ul></ul>
  • 13. Microsphere PSD Development
  • 14. Microsphere Electrical Measurement <ul><li>Cavity Resonator Techniques </li></ul><ul><ul><li>Perturbation: </li></ul></ul><ul><ul><ul><li>Measure fc (resonant frequency) and Q of empty cavity cavity </li></ul></ul></ul><ul><ul><ul><li>Measure fc and Q with powder sample in cavity </li></ul></ul></ul><ul><ul><ul><li>find f c and Q from net analyzer, calculate e’, Tan D </li></ul></ul></ul><ul><ul><li>Absolute </li></ul></ul><ul><ul><ul><li>Characterize/model cavity </li></ul></ul></ul><ul><ul><ul><li>Measure f c and Q, calculate e’, TanD </li></ul></ul></ul><ul><ul><li>Calibrated </li></ul></ul><ul><ul><ul><li>Measure standard materials, compare to test material </li></ul></ul></ul><ul><ul><li>Damaskos </li></ul></ul><ul><li>Results </li></ul><ul><li>Sphere Dielectric constant air+ = 1.18-1.19 over 1-25 GHz </li></ul><ul><li>Sphere Loss Tangent 3.1 x 10 -3 to 4.0 x 10 -3 over 1-25 GHz </li></ul>
  • 15. Dielectric Properties of Microspheres over Frequency
  • 16. <ul><li>Techniques Employed </li></ul><ul><ul><li>SEM </li></ul></ul><ul><ul><li>TEM </li></ul></ul><ul><ul><li>XRD (Xray Diffraction) </li></ul></ul><ul><ul><ul><li>Reflection at d=1.234A o </li></ul></ul></ul><ul><ul><ul><li>Crystalline phase: B x O x </li></ul></ul></ul><ul><ul><ul><li>Increasing intensity with Lot Number </li></ul></ul></ul><ul><li>Lot d spacing Relative K or Er Tan D </li></ul><ul><li>amplitude 10 -3 </li></ul><ul><li>001 1.234 58 1.19-1.182 3.6-3.9 </li></ul><ul><li>003 1.234 69 1.186-1.178 3.3-4.0 </li></ul><ul><li>004 1.179 79 1.185-1.176 3.1-3.4 </li></ul>Microsphere Materials Analysis <ul><li>Analysis Conclusions </li></ul><ul><li>Dielectric Constant and Loss Tangent decrease with Lot Number increase </li></ul><ul><li>Materials Analysis </li></ul><ul><ul><li>Presence of crystalline phase </li></ul></ul><ul><ul><li>Crystallinity Increases with Lot Number </li></ul></ul><ul><li>Dielectric Constant and Loss Tangent decrease with increasing degree of crystallinity </li></ul><ul><li>Electrical performance is dependent on materials constituents and processing </li></ul>
  • 17. Final Microsphere Attributes <ul><li>Resilient to multiple high fire temperatures </li></ul><ul><li>Electrical </li></ul><ul><ul><li>Low K (measured 1.18 @ 2-20 GHZ) </li></ul></ul><ul><ul><li>Low Loss (measured 10 -3 @ 2-20 GHZ) </li></ul></ul><ul><ul><li>Somewhat Lot Dependent </li></ul></ul><ul><li>Sphere Particle Size Distribution < 20 microns </li></ul><ul><li>Spheres will electrically and physically meet specifications for thick film dielectric material </li></ul>
  • 18. Electrical Insulation Properties of the Low K Thick Film Dielectric <ul><li>Dielectric and Insulation Properties </li></ul><ul><li>  Property Gold System Silver System </li></ul><ul><li>Dielectric Constant 4.48 4.61 </li></ul><ul><li>Tan  @ 1 MHz 2.6 x 10 -4 3.0 x 10 -4 </li></ul><ul><li>Insulation Resistance, 1.3 x 10 11 1.8 x 10 11 </li></ul><ul><li>@ 100 Volts,  </li></ul><ul><li>Dielectric Strength, 765- 1010 412-1100 </li></ul><ul><li>VDC/mil </li></ul><ul><li>Electrolytic Leakage Current, nil 18 </li></ul><ul><li>@ 10v 9  A/cm 2 /mil) </li></ul><ul><li>  </li></ul>
  • 19. High Current Carrying Capability <ul><li>Thick Film Gold or Silver </li></ul><ul><li>.001-.005 ohm/square/mil </li></ul><ul><li>Multilayer Approach </li></ul>
  • 20. Thick Film on Low Temperature Cofired Ceramic
  • 21. High Dimensional Stability, Power Dissipation, Thermal Conduction
  • 22. Dimensional Stability <ul><li>3 D Shrinkage Due to Firing Constrained Sintering </li></ul><ul><li>(Tolerance) Thick Film </li></ul><ul><li> Tape Transfer (LTCC) </li></ul>
  • 23. Thick Film on Alumina <ul><li>Teledyne Microelectronics </li></ul>
  • 24. Thick Film on Cofired Ceramic on Molded Aluminum Nitride: Patent 5,158,912
  • 25. Microwave Characterization and Applications
  • 26. Microwave Characterization, T Resonator <ul><li>T Resonator standard design </li></ul><ul><li>Process: </li></ul><ul><ul><li>Ground Plane P/D/F </li></ul></ul><ul><ul><li>Dielectric P/D/F (2x) </li></ul></ul><ul><ul><li>Planarization layer P/D/F </li></ul></ul><ul><ul><li>Signal Conductor P/D/F </li></ul></ul><ul><li>Characterized Dielectric over 1-12 GHz Range </li></ul><ul><li>Flat K response over the range </li></ul><ul><li>Virginia Tech </li></ul>
  • 27. Microwave Characterization: Stripline <ul><li>Thick Film Ag on Low K on Al 2 O 3 (6x8”) </li></ul><ul><li>Stripline Structure </li></ul><ul><ul><li>Ground Plane </li></ul></ul><ul><ul><li>Dielectric </li></ul></ul><ul><ul><li>Signal layer </li></ul></ul><ul><li>Characterized at 2 GHz </li></ul><ul><li>Acceptable for microwave applications </li></ul><ul><li>MIT Lincoln Labs </li></ul><ul><li>EMCA/Ferro </li></ul>
  • 28. Application: Re-Design Single Layer Thin Film Microwave Circuit <ul><li>MIT Lincoln Labs Amplifier Design </li></ul><ul><li>Thin Film on Alumina </li></ul><ul><li>Redesign for Thick Film </li></ul>
  • 29. Device Development Steps <ul><li>Choose Material </li></ul><ul><ul><li>Low K thick film system; gold </li></ul></ul><ul><ul><li>Resistor Material Candidates </li></ul></ul><ul><li>Design substrate Thin Film to Thick Film </li></ul><ul><li>Model Designs </li></ul><ul><li>Develop Materials, Process </li></ul><ul><ul><li>Buried Thick Film Resistor! </li></ul></ul><ul><ul><li>Multilayer Thick Film </li></ul></ul><ul><li>Fab Substrates </li></ul><ul><li>Electrical: Transmission Parameters (S) </li></ul>
  • 30. Thick Film Design Signal Layer Signal Layer Ground Plane Ground Plane Ground Plane Vias <ul><li>New Thick Film Amplifier description </li></ul><ul><ul><li>. 015 alumina, 5 metal layers </li></ul></ul><ul><ul><li>ground plane on back side of alumina -plugged vias -2 signal layers -resistors on buried signal layers </li></ul></ul><ul><ul><li>asymmetric signal layer on alumina under dielectric </li></ul></ul><ul><ul><li>symmetric signal layer on/under dielectric </li></ul></ul><ul><ul><li>Low K thick film dielectric separates </li></ul></ul><ul><ul><ul><li>first signal layer from buried ground plane (above signal), </li></ul></ul></ul><ul><ul><ul><li>second signal layer from top and buried ground plane </li></ul></ul></ul>
  • 31. Materials Issues <ul><li>Low K thick film dielectric </li></ul><ul><ul><li>good isolation and smooth surface </li></ul></ul><ul><ul><li>Microsphere filled dielectric </li></ul></ul><ul><ul><li>EMCA fine line gold characterized to 12 GHz in prior work </li></ul></ul><ul><li>fine line gold ink </li></ul><ul><ul><li>EMCA 3204D </li></ul></ul><ul><li>Via plug in substrate </li></ul><ul><ul><li>EMCA 3266E, extruded through .008 laser drilled vias </li></ul></ul><ul><li>Buried Resistors </li></ul>
  • 32. Redesigned Thick Film Lincoln Labs Circuit First Layer Second Layer (EMCA/Ferro)
  • 33. Buried Resistor Performance On alumina, under Low K On Low K, under Low K
  • 34. Electrical Performance <ul><li>Conclusions </li></ul><ul><li>HP 8510 Network Analyzer </li></ul><ul><ul><li>S Parameters: (S 11 , S 12 , S 21 )(S Port output Port input ) </li></ul></ul><ul><ul><li>1-20 GHz </li></ul></ul><ul><li>Screen Printed conductors may be adequate for this application </li></ul><ul><ul><li>Performance through 13 GHz adequate </li></ul></ul><ul><ul><li>> 13 GHz may require line length adjustment, or etched lines </li></ul></ul><ul><li>Low K Dielectric performed adequately in application </li></ul><ul><li>Buried Resistors are feasible </li></ul>
  • 35. Bottom Lines <ul><li>Development effort on ceramic materials system successfully developed for VLSI, microwave, wireless substrates </li></ul><ul><li>Step wise approach to develop a system: materials component by materials component </li></ul>

×