Trigo Ratios

3,019 views
2,786 views

Published on

Published in: Education, Technology, Design
0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
3,019
On SlideShare
0
From Embeds
0
Number of Embeds
341
Actions
Shares
0
Downloads
41
Comments
0
Likes
2
Embeds 0
No embeds

No notes for slide

Trigo Ratios

  1. 1. I would like to give credit to the following people below for the wonderful PowerPoint presentation. Thank you very much, Ms. Garcia Moy Yee Ping 3 Szeto Kwok Fai 2 Chau Ping 1
  2. 2. Trigonometry ( 三角幾何 ) means “ Triangle” and “Measurement” Introduction Trigonometric Ratios
  3. 3. Adjacent , Opposite Side and Hypotenuse of a Right Angle Triangle .
  4. 4. Adjacent side Opposite side hypotenuse 
  5. 5. hypotenuse Adjacent side Opposite side 
  6. 6. Three Types Trigonometric Ratios <ul><li>There are 3 kinds of trigonometric ratios we will learn. </li></ul><ul><ul><li>sine ratio </li></ul></ul><ul><ul><li>cosine ratio </li></ul></ul><ul><ul><li>tangent ratio </li></ul></ul>
  7. 7. Sine Ratios <ul><li>Definition of Sine Ratio. </li></ul><ul><li>Application of Sine Ratio. </li></ul>
  8. 8. <ul><li>Definition of Sine Ratio . </li></ul>1 If the hypotenuse equals to 1 Sin  =  Opposite sides
  9. 9. <ul><li>Definition of Sine Ratio . </li></ul>For any right-angled triangle Sin  =  Opposite side hypotenuses
  10. 10. Exercise 1 In the figure, find sin  Sin  = Opposite Side hypotenuses = 4 7  = 34.85  (corr to 2 d.p.)  4 7
  11. 11. Exercise 2 11 In the figure, find y Sin35  = Opposite Side hypotenuses y 11 y = 6.31 (corr to 2.d.p.) 35 ° y Sin35  = y = 11 sin35 
  12. 12. Cosine Ratios <ul><li>Definition of Cosine. </li></ul><ul><li>Relation of Cosine to the sides of right angle triangle. </li></ul>
  13. 13. <ul><li>Definition of Cosine Ratio . </li></ul>1 If the hypotenuse equals to 1 Cos  =  Adjacent Side
  14. 14. <ul><li>Definition of Cosine Ratio . </li></ul>For any right-angled triangle Cos  =  hypotenuses Adjacent Side
  15. 15. Exercise 3  3 8 In the figure, find cos  cos  = adjacent Side hypotenuses = 3 8  = 67.98  (corr to 2 d.p.)
  16. 16. Exercise 4 6 In the figure, find x Cos 42  = Adjacent Side hypotenuses 6 x x = 8.07 (corr to 2.d.p.) 42 ° x Cos 42  = x = 6 Cos 42 
  17. 17. Tangent Ratios <ul><li>Definition of Tangent. </li></ul><ul><li>Relation of Tangent to the sides of right angle triangle. </li></ul>
  18. 18. <ul><li>Definition of Tangent Ratio. </li></ul>For any right-angled triangle tan  =  Adjacent Side Opposite Side
  19. 19. Exercise 5  3 5 In the figure, find tan  tan  = adjacent Side Opposite side = 3 5  = 78.69  (corr to 2 d.p.)
  20. 20. Exercise 6 z 5 In the figure, find z tan 22  = adjacent Side Opposite side 5 z z = 12.38 (corr to 2 d.p.) 22  tan 22  = 5 tan 22  z =
  21. 21. Conclusion Make Sure that the triangle is right-angled
  22. 22. The END

×