Secções de cones

  • 8,777 views
Uploaded on

 

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
No Downloads

Views

Total Views
8,777
On Slideshare
0
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
127
Comments
0
Likes
2

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. GEOMETRIA DESCRITIVA A 11.º Ano Secções por Planos Projectantes Cones © antónio de campos, 2010
  • 2. GENERALIDADES – Cones Antes de determinar a figura da secção produzida por um plano num cone, é necessário identificar o tipo de secção . Para cones contidos em planos horizontais ou frontais, se o plano secante é paralelo à base do cone, a figura de secção é uma circunferência . O processo de identificação do tipo de secção produzida passa pelos seguintes passos, se o plano secante conter o vértice de superfície : 1 – Determinar a recta de intersecção do plano secante com o plano da base do cone; 2 – Analisar a posição da recta de intersecção em relação à base do cone; a) – se a recta de intersecção é exterior à base, a figura da secção é um ponto ; b) - se a recta de intersecção é tangente à base, a figura da secção é uma recta ; c) - se a recta de intersecção é secante à base, a figura da secção é um triângulo . O processo de identificação do tipo de secção produzida passa pelos seguintes passos, se o plano secante não conter o vértice de superfície : 1 – Conduzir pelo vértice do cone, um plano paralelo ao plano secante; 2 – Determinar a recta de intersecção do plano paralelo com o plano da base do cone; 3 – Analisar a posição da recta de intersecção em relação à base do cone; a) – se a recta de intersecção é exterior à base, a figura da secção é uma elipse ; b) - se a recta de intersecção é tangente à base, a figura da secção é uma parábola ; c) - se a recta de intersecção é secante à base, a figura da secção é uma hipérbole .
  • 3. Secção Plana de um Cone com Base Frontal por um Plano Secante Paralelo à Base Uma figura de secção resultante da secção produzida por um plano frontal φ 1 num cone de revolução, com a base contida no plano frontal φ . (h φ ) ≡ V 2 (h φ1 ) x O 2 O 1 V 1 A 2 A 1 B 2 B 1 C 2 C 1
  • 4. Secção Plana de um Cone com Base Frontal por um Plano Secante que Contém o Vértice de Superfície com a Recta de Intersecção Exterior à Base Uma figura de secção resultante da secção produzida por um plano vertical α num cone de revolução, com a base contida no plano frontal φ . (h φ ) ≡ V 2 h α f α A recta vertical de intersecção v entre o plano secante e o plano da base do cone, passa pelo exterior da base. O ponto V é a figura de secção . v 2 x O 2 O 1 V 1 A 2 A 1 B 2 B 1 (v 1 )
  • 5. Secção Plana de um Cone com Base Frontal por um Plano Secante que Contém o Vértice de Superfície com a Recta de Intersecção Tangente à Base Uma figura de secção resultante da secção produzida por um plano vertical α num cone de revolução, com a base contida no plano frontal φ . (h φ ) ≡ V 2 h α f α ≡ (v 1 ) v 2 A recta vertical de intersecção v entre entre o plano secante e o plano da base do cone, é tangente à base. A recta r é a figura de secção . ≡ r 1 r 2 x O 2 O 1 V 1 A 2 A 1 B 2 B 1
  • 6. Secção Plana de um Cone com Base Horizontal por um Plano Secante que Contém o Vértice de Superfície com a Recta de Intersecção Secante à Base Um sólido resultante da secção produzida por um plano de topo δ num cone oblíquo, com a base contida no Plano Horizontal de Projecção.. h δ f δ ≡ D 2 O h δ é a recta de intersecção entre o plano secante e o plano da base do cone. A recta é secante à base. O triângulo [ CDV ] é a figura de secção . x A 2 A 1 O 2 O 1 B 2 B 1 V 2 V 1 C 1 C 2 D 1
  • 7. Secção Plana de um Cone com Base Frontal por um Plano Secante que Não Contém o Vértice de Superfície com a Recta de Intersecção Exterior à Base Pretende-se as projecções da figura de secção resultante da secção produzida por um plano vertical α num cone de revolução, situado no 1.º diedro, com a base contida no Plano Frontal de Projecção. ≡ V 2 h α f α h θ Um plano auxiliar vertical θ , paralelo ao plano α e que contém o vértice, produz f θ que é a recta de intersecção entre o plano secante e o plano da base. A recta é exterior à base, sendo a figura de secção uma elipse. f θ Utilizar o método dos planos paralelos à base para obter a elipse: 1 – Plano auxiliar paralelo ao plano da base; 2 – A figura de secção (circunferência) do plano auxiliar sobre superfície lateral do sólido; 3 – Recta de intersecção entre plano secante e plano auxiliar; 4 – Pontos de intersecção da recta de intersecção com a circunferência. (h φ ) i 2 ≡ E 1 ≡ F 1 A seguir, construir o eixo menor da elipse, com o ponto M a ser o ponto de concorrência dos dois eixos da elipse. Depois é obtido mais quatro pontos via o método dos planos paralelos à base. Com os oito pontos é possível construir a elipse. ≡ M 1 (h φ1 ) i’ 2 ≡ G 1 ≡ H 1 (h φ2 ) i’’ 2 ≡ I 1 ≡ J 1 ≡ Q 2 x O 2 O 1 V 1 A 2 A 1 B 2 B 1 C 2 C 1 D 2 D 1 R 2 R 1 Q 1 (i 1 ) E 2 F 2 M 2 S 2 S 1 (i’ 1 ) G 2 H 2 T 2 T 1 I 2 (i’’ 1 ) J 2
  • 8. É dado um cone oblíquo , situado no 1.º diedro, com a base contida num plano horizontal. O ponto O (-2; 4; 2) é o centro da circunferência que limita a base, cujo raio é de 3,5 cm. O ponto V (-4; 4; 10) é o vértice do cone. Determina as projecções da figura da secção produzida no cone por um plano de topo θ , sabendo que o plano θ corta o eixo x num ponto com 5 cm de abcissa, e faz um ângulo de 40º (a.d.) com o Plano Horizontal de Projecção. (f ν ) h θ f θ Um plano auxiliar de topo θ 1 , paralelo ao plano θ e que contém o vértice. A recta r é a recta de intersecção entre o plano secante e o plano da base. A recta é exterior à base, sendo a figura de secção uma elipse. f θ 1 h θ 1 Utilizar o método dos planos paralelos à base para obter a elipse: 1 – Plano auxiliar paralelo ao plano da base; 2 – A figura de secção (circunferência) do plano auxiliar sobre superfície lateral do sólido; 3 – Recta de intersecção entre plano secante e plano auxiliar; 4 – Pontos de intersecção da recta de intersecção com a circunferência. (f ν 1 ) i 1 ≡ E 2 ≡ F 2 ≡ M 2 A seguir, construir o eixo menor da elipse, com o ponto M a ser o ponto de concorrência dos dois eixos da elipse. Depois é obtido mais quatro pontos via o método dos planos paralelos à base. Com os oito pontos é possível construir a elipse. (f ν 2 ) i’ 1 ≡ G 2 ≡ H 2 (f ν 3 ) i’’ 1 ≡ I 2 ≡ J 2 r 1 x y ≡ z O 2 O 1 V 2 V 1 A 2 A 1 B 2 B 1 R 2 R 1 C 2 C 1 D 2 D 1 Q 2 (i 2 ) E 1 F 1 M 1 S 2 S 1 Q 1 (i’ 2 ) G 1 H 1 T 2 T 1 (i’’ 2 ) I 1 J 1 (r 2 ) Q’ 2 Q’ 1 Q’’ 2 Q’’ 1
  • 9. Secção Plana de um Cone com Base Horizontal por um Plano Secante que Não Contém o Vértice de Superfície com a Recta de Intersecção Tangente à Base Pretende-se as projecções do sólido resultante da secção produzida por um plano de topo θ num cone oblíquo, situado no 1.º diedro, com a base contida no Plano Horizontal de Projecção. h θ f θ ≡ D 2 Um plano auxiliar vertical θ 1 , paralelo ao plano secante θ e que contém o vértice, produz f θ 1 que é a recta de intersecção entre o plano secante e o plano da base. A recta é tangente à base, sendo a figura de secção uma parábola. f θ 1 h θ 1 Para obter a parábola, primeiro determinar os pontos da figura de secção : C , D e E . Depois é obtido mais seis pontos via o método dos planos paralelos à base. Com os nove pontos é possível construir a parábola. g 1 g 2 (f ν ) i 1 ≡ F 2 ≡ G 2 (f ν 1 ) i’ 1 ≡ H 2 (f ν 2 ) i’’ 1 ≡ J 2 ≡ K 2 ≡ I 2 x A 2 A 1 O 2 O 1 B 2 B 1 V 2 V 1 C 1 C 2 D 1 E 2 E 1 Q 2 Q 1 R 2 R 1 (i 2 ) F 1 G 1 Q’ 2 Q’ 1 S 2 S 1 (i’ 2 ) H 1 I 1 T 2 T 1 Q’’ 2 Q’’ 1 (i’’ 2 ) J 1 K 1
  • 10. Secção Plana de um Cone com Base Horizontal por um Plano Secante que Não Contém o Vértice de Superfície com a Recta de Intersecção Secante à Base Pretende-se as projecções da figura da secção resultante da secção produzida por um plano vertical α num cone de revolução (limitado por uma única folha), situado no 1.º diedro, com a base contida no Plano Horizontal de Projecção. ≡ V 1 h α f α Um plano auxiliar vertical α 1 , paralelo ao plano α e que contém o vértice, produz h α que é a recta de intersecção entre o plano secante e o plano da base. A recta é secante à base, sendo a figura de secção uma hipérbole. h α 1 f α 1 Para obter a hipérbole, primeiro determinar os pontos da figura de secção : C e D . O ponto E é o ponto que o plano secante corta a geratriz mais á direita do contorno aparente frontal do cone. Para determinar o espaço útil para os planos auxiliares, é necessário determinar o ponto de maior cota da secção (o ponto F ), através de ponto T e recta tangente à base (recta t ) e da geratriz que contém o ponto T . No espaço útil entre os pontos F , C e D , será obtido mais seis pontos via o método dos planos paralelos à base. Com os nove pontos é possível construir a parábola. t 1 ≡ t 2 g 1 g 2 x O 2 O 1 V 2 A 2 A 1 B 2 B 1 C 2 C 1 D 2 D 1 E 2 E 1 T 2 T 1 F 2 F 1
  • 11. É dado um cone de revolução , situado no 1.º diedro, com a base contida no Plano Frontal de Projecção e tangente ao Plano Horizontal de Projecção. O centro da base é o ponto O (1; 0; 4). As geratrizes do cone medem 8 cm. O cone é cortado por um plano vertical α , que corta o eixo x num ponto com 3 cm de abcissa, e faz um ângulo de 60º (a.d.) com o Plano Frontal de Projecção. Determina as projecções do sólido resultante da secção produzida no cone pelo plano α . Considera a parte do sólido compreendida entre o plano secante e o plano de base. Determina a V.G. da figura de secção. h α f α Um plano auxiliar vertical α 1 , paralelo ao plano secante α e que contém o vértice, produz f α 1 que é a recta de intersecção entre o plano secante e o plano da base. A recta é tangente à base, sendo a figura de secção uma parábola. h α 1 f α 1 Para obter a parábola, primeiro determinar os pontos da figura de secção : C , D e E . Depois é obtido mais seis pontos via o método dos planos paralelos à base. Com os nove pontos é possível construir a parábola. ≡ D 1 Para obter a V.G. da parábola, é necessário rebater o plano secante para o Plano Frontal de Projecção, sendo a charneira f α . ≡ (e) 1 ≡ e 1 V.G. x y ≡ z O 2 O 1 ≡ V 2 V 1 C 2 C 1 D 2 E 2 E 1