SlideShare a Scribd company logo
1 of 18
Download to read offline
ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU
DEPARTAMENTO DE ENGENHARIA MECÂNICA E GESTÃO
                  INDUSTRIAL




      Mecânica dos Fluidos
   Escoamentos no interior de condutas




               Álvaro Aguiar n.º 4253
               José Onofre n.º 4458
                Rui Portela n.º 4052




                    5/01/2004
ÍNDICE


1.       RESUMO                                                                                      1


2.       INTRODUÇÃO                                                                                  1


3.       DESCRIÇÃO DA INSTALAÇÃO E PROCEDIMENTOS                                                     2


4.       CONSIDERAÇÕES TEÓRICAS                                                                      3

4.1.     Escoamentos interiores                                                                      3
     4.1.1.       Escoamento em regime laminar                                                       4
     4.1.2.       Escoamento em regime turbulento                                                    5


4.2.     Equação de Bernoulli                                                                        6


4.3.     Análise dimensional de uma conduta                                                          6


5.       RESULTADOS                                                                                  9

5.1.     Trajecto 1                                                                                  9
     5.1.1.       Determinação da velocidade de escoamento                                           9
     5.1.2.       Determinação da perda de carga por atrito na conduta                              10
     5.1.3.       Representação gráfica                                                             11


5.2.     Trajecto 2a                                                                                12
     5.2.1.       Determinação da velocidade de escoamento                                          12
     5.2.2.       Determinação das perdas localizadas na expansão                                   12
        5.2.2.1.      Desprezando as perdas por atrito                                              12
        5.2.2.2.      Considerando as perdas de carga por atrito                                    13
              5.2.2.2.1.   Determinação da perda de carga por atrito na conduta de menor diâmetro   14
              5.2.2.2.2.   Determinação da perda de carga por atrito na conduta de maior diâmetro   14
     5.2.3.       Valores teóricos das perdas localizadas na expansão                               15


6.       CONCLUSÕES                                                                                 15


7.       NOMENCLATURA                                                                               16


8.       REFERÊNCIAS                                                                                16
Escola Superior de Tecnologia do Instituto Politécnico de Viseu

                DEMGi – Departamento de Engenharia Mecânica e Gestão industrial


1. Resumo

   Este trabalho tem como objectivo o estudo experimental de escoamentos no interior de
condutas. Desta forma, serão aplicados e, consequentemente, demonstrados os conhecimentos
adquiridos ao caso prático do escoamento no interior de condutas com diâmetros diferentes e
através de alguns acessórios. Para o efeito, recorreu-se a uma bancada hidráulica.
   Assim, para um dos trajectos considerados, pretende-se determinar a perda de carga por
atrito na conduta e representar graficamente os valores obtidos utilizando os grupos
adimensionais mais adequados. Para o segundo trajecto em análise, pretende-se determinar as
perdas de carga localizadas na expansão, bem como o respectivo coeficiente de perda localizada.

2. Introdução

   O escoamento em condutas a várias velocidades, de vários fluidos e em vários formatos de
condutas, é um problema fulcral da Mecânica dos Fluidos.
   Sistemas de tubagens são encontrados em quase todos os projectos de engenharia e, por isso,
foram e têm sido estudados extensivamente. Contudo, o problema básico das tubagens consiste
em saber qual a melhor conjugação de factores necessária para permitir o escoamento, sabendo
que depende da geometria dos condutas, dos seus componentes adicionais, do caudal, das
propriedades do fluido e das quedas de pressão.
   Tendo como objectivo o estudo de escoamentos interiores, torna-se importante definir
escoamento interior de um fluido como um escoamento interno limitado por paredes, no qual o
escoamento propriamente dito é dado pelo movimento das partículas que compõem o fluido. No
entanto, não existe uma análise geral que possa ser aplicada ao estudo de escoamentos, mas sim
soluções particulares em que se admitem simplificações de equações fundamentais, resultados da
simulação numérica e resultados experimentais. A inexistência de soluções gerais deve-se, em
grande parte, ao aparecimento de um fenómeno denominado turbulência. Logo, um escoamento
nem sempre ocorre de igual forma.
   Deste modo, ao longo deste trabalho caracterizar-se-ão as diferenças entre os regimes em que
poderá ocorrer o escoamento no interior de uma conduta, tendo em conta a forma do perfil de
velocidades, a perda de carga e a influência da rugosidade, entre outros factores. Para além disso,
deduzir-se-á uma expressão que relaciona a variação de pressão e a perda de carga numa conduta
circular, considerando, para tal, a existência de perdas de carga localizadas situadas entre as
tomadas de pressão e ainda, o desnível entre as mesmas.

                  Campus Politécnico, 3501 Repeses – tel nr +351.232480543/7 – fax nr +351.232424651 – email demgi@mail.estv.ipv.pt
                                                                                                                                                 1
Escola Superior de Tecnologia do Instituto Politécnico de Viseu

                DEMGi – Departamento de Engenharia Mecânica e Gestão industrial

   O recurso à análise dimensional reveste-se de um papel fundamental, já que, com esta
ferramenta pode proceder-se ao estudo experimental de um escoamento e efectuar extrapolações
para um escoamento semelhante. Assim, atendendo às propriedades da conduta, podem obter-se
todos os grupos adimensionais importantes para o dimensionamento da mesma.


3. Descrição da instalação e procedimentos

   Material utilizado:


           •   Água;
           •   Bancada hidráulica;
           •   Reservatório graduado;
           •   Cronómetro.


   Procedimento experimental:


   Após um breve contacto com a bancada hidráulica da figura 1, procedeu-se à realização da
experiência.
   Inicialmente, verificou-se se as tubagens se encontravam devidame nte ligadas e se as
válvulas de globo estavam fechadas de modo a obter o trajecto desejado.
   Posteriormente, ligou-se a bomba e, progressivamente, abriu- se a válvula reguladora de
modo a obter um determinado caudal. Seguidamente, ligaram-se os manómetros às respectivas
tomadas de pressão, tendo o cuidado prévio de abrir as válvulas de purga de ar, situadas na parte
superior do manómetro, e de fechar as válvulas de drenagem de água, situadas na parte inferior
do manómetro.
   Para cada trajecto, obteve-se o caudal através da medição do volume debitado (com o auxílio
de um reservatório graduado) e do tempo (com o auxílio de um cronómetro).
   Para o trajecto 1, uma conduta com 17 mm de diâmetro e 800 mm de comprimento,
efectuaram-se leituras das variações de pressão para três caudais diferentes.
   Para o trajecto 2a, efectuaram-se leituras das variações de pressão para três caudais
diferentes, sabendo que a distância entre as tomadas de pressão é de 150 mm, o diâmetro menor
de 17 mm e o diâmetro maior de 28.6 mm.



                  Campus Politécnico, 3501 Repeses – tel nr +351.232480543/7 – fax nr +351.232424651 – email demgi@mail.estv.ipv.pt
                                                                                                                                                 2
Escola Superior de Tecnologia do Instituto Politécnico de Viseu

                 DEMGi – Departamento de Engenharia Mecânica e Gestão industrial




                                                        Figura 1 – Bancada hidráulica.



4. Considerações teóricas


4.1. Escoamentos interiores

    Nos escoamentos interiores as características hidrodinâmicas do escoamento são controladas
pela fronteira exterior do escoamento que é a constituída por paredes. Daqui resulta que o
escoamento se dá sobre pressão, isto é, no interior da conduta a pressão não está relacionada com
pressão do exterior, porque as suas forças são compensadas pelas forças viscosas.
    Os escoamentos no interior de condutas podem ocorrer em regime laminar, turbulento ou
num terceiro regime dito de transição. A transição do escoamento laminar para escoamento
turbulento depende de um parâmetro adimensional que se denomina número de Reynolds (Re):
                                                                           ρ ⋅V ⋅ d
                                                               Re d =                                                                          (1.1)
                                                                              µ
     Para isso, basta apenas saber que a transição de laminar para turbulento verifica-se para
Re transição ≈ 2300 . Posto isto, se Re presente < Retransição , então o escoamento é laminar. Se pelo

contrário, Re presente > Retransição , então o escoamento é turbulento.

    Para a realização de um estudo de escoamentos de condutas é necessário saber-se a
constituição física da conduta e, para tal, utiliza-se o coeficiente de atrito de Darcy, designado
por f, que permite calcular as perdas de carga por atrito ao longo da conduta. Para tal, recorre-se
à equação de Darcy-Weisbach que é válida para escoamentos interiores de qualquer secção,
aplicando-se quer a escoamentos laminares quer a turbulentos:
                    Campus Politécnico, 3501 Repeses – tel nr +351.232480543/7 – fax nr +351.232424651 – email demgi@mail.estv.ipv.pt
                                                                                                                                                   3
Escola Superior de Tecnologia do Instituto Politécnico de Viseu

               DEMGi – Departamento de Engenharia Mecânica e Gestão industrial

                                                                                     2
                                                                     L V
                                                             hf = f ⋅ ⋅                                                                      (1.2)
                                                                     d 2g
    Uma rede para escoamento de um fluido não é apenas constituída pela tubagem, também é
necessariamente constituída por válvulas, joelhos, reduções, derivações, etc. Estes acessórios
produzem perdas de carga por vezes importantes que podem ser calculadas por:
                                                   2
                                               V
                                  hl = K .        (sendo K o coeficiente de perda)                                                           (1.3)
                                               2g
    Uma análise de volume de controlo entre a secção de expansão e o final da zona de
separação fornece uma perda teórica. Como a saída é para um tubo de tamanho finito, é chamada
de expansão brusca (EB).
    Vem, então, que:
                                                                                2
                                                              d2     h
                                                   K EB    = 1− 2  = 2 l                                                                   (1.4)
                                                              D  V
                                                                         2g



4.1.1.   Escoamento em regime laminar

    Um exemplo comum de um escoamento em regime laminar, é o da água à saída de uma
torneira: para baixos caudais observa-se um fio de água estável, com uma superfície lisa, em que
as partículas do fluido se movem segundo linhas paralelas. Junto às paredes da conduta, num
fluido viscoso, origina-se um gradiente de velocidades: a velocidade varia desde o valor nulo na
parede até à velocidade não perturbada pelo efeito da parede. Criam-se, assim, duas zonas de
escoamento, como mostra a figura 2, uma junto à parede, denominada camada limite, onde existe
um gradiente de velocidades e onde se fazem sentir as tensões viscosas; outra camada, exterior,
onde o perfil de velocidades é constante e onde as tensões viscosas são nulas, podendo o
escoamento ser tratado como invíscido.
    Num escoamento laminar a troca de quantidade de movimento deve-se às tensões viscosas.




                     Figura 2 – Representação do perfil de velocidades de um regime laminar.

                  Campus Politécnico, 3501 Repeses – tel nr +351.232480543/7 – fax nr +351.232424651 – email demgi@mail.estv.ipv.pt
                                                                                                                                                 4
Escola Superior de Tecnologia do Instituto Politécnico de Viseu

                     DEMGi – Departamento de Engenharia Mecânica e Gestão industrial

     O coeficiente de atrito de Darcy em regime laminar é dado por:
                                                                   64
                                                             f =                                                                (1.5)
                                                                   Re
     A rugosidade superficial afecta a resistência ao atrito. Todavia, em escoamentos laminares a
perda de carga distribuída não é dependente da rugosidade da parede das condutas, na medida
em que, o efeito de atrito, devido exclusivamente ao gradiente de velocidade, está distribuído por
toda a secção de escoamento.



4.1.2.     Escoamento em regime turbulento

     Este tipo de regime é caracterizado pelo movimento desordenado das partículas do fluido, ou
seja, não se verifica um padrão bem definido no movimento.
     A troca de quantidade de movimento para um escoamento turbulento deve-se às tensões
viscosas e às tensões de Reynolds. Devido a estes factores, neste escoame nto, o perfil de
velocidades é mais homogéneo, como mostra a figura 3, encontrando-se o valor da velocidade
média e da velocidade máxima mais próximos relativamente ao que acontece em regime laminar.




                         Figura 3 – Representação do perfil de velocidades de um regime turbulento.


     O coeficiente de atrito de Darcy em regime turbulento pode ser obtido por dois processos:
          i) Equação de Colebrook –White:

                                            1              ε     2,51                 
                                               ≈ −2,0 log⋅  d +                                                               (1.6)
                                             f              3,7 Re d ⋅ f              
                                                                                      
          ii) Diagrama de Moody.


     O primeiro processo tem a grande vantagem de apresentar maior veracidade e exactidão nos
resultados obtidos, tendo como único senão o facto de ser um processo mais moroso
relativamente ao outro processo referido.
          Pelo diagrama de Moody a obtenção do valor do coeficiente de atrito de Darcy é feito de
modo imediato, na medida em que, precisa-se apenas do valor do número de Reynolds e da
                Campus Politécnico, 3501 Repeses – tel nr +351.232480543/7 – fax nr +351.232424651 – email demgi@mail.estv.ipv.pt
                                                                                                                                  5
Escola Superior de Tecnologia do Instituto Politécnico de Viseu

                   DEMGi – Departamento de Engenharia Mecânica e Gestão industrial

rugosidade relativa do tubo. Apesar de ser um processo mais directo é, contudo, menos preciso.


       Os escoamentos turbulentos são bastante afectados pela rugosidade da parede das condutas,
já que, o efeito do gradie nte se encontra muito próximo da parede. Após determinado ponto
inicial, o atrito turbulento aumenta monotonamente com a rugosidade relativa ε d . Assim, para

qualquer valor de ε d , o factor de atrito torna-se constante (totalmente rugoso) a altos números
de Reynolds.



4.2. Equação de Bernoulli

       A equação de Bernoulli relaciona pressão, velocidade e cota. Para utilizar correctamente esta
equação, devem considerar-se escoamentos em regime permanente, de atrito desprezável,
incompressíveis, invíscidos e sem trans ferência de calor ou trabalho. É traduzida por:
                                                   2                                     2
                                      p1 V 1             p V2
                                        +    + z1 + hB = 2 +  + z2 + hT + ht                                                                      (1.7)
                                     ρ g 2g             ρg 2g

       Onde, tem-se que: ht = h f + ∑ hl


       Caso não existam bombas ou turbinas na situação em estudo, a equação surge simplificada:
                                                             2                            2
                                                p1 V 1        p V2
                                                  +    + z1 = 2 +   + z2 + ht                                                                     (1.8)
                                               ρ g 2g        ρ g 2g
       Estando o escoamento desenvolvido nas condições atrás impostas, o seu perfil de velocidade

é igual em qualquer secção, ou seja, V 1 = V 2 . Pode então, recorrendo à expressão (1.3),
relacionar-se a variação de pressão entre dois pontos de uma secção circular, com a perda de
carga, tendo também em conta as perdas localizadas e o desnível entre esses dois pontos:
                                                                          ∆P
                                                                 ht =        + ∆z                                                                 (1.9)
                                                                          ρg



4.3.     Análise dimensional de uma conduta

       O dimensionamento de uma conduta para o transporte de um líquido tem por base as quedas
de pressão provocadas por vários factores: o diâmetro da conduta; natureza do fluido escoado

                     Campus Politécnico, 3501 Repeses – tel nr +351.232480543/7 – fax nr +351.232424651 – email demgi@mail.estv.ipv.pt
                                                                                                                                                      6
Escola Superior de Tecnologia do Instituto Politécnico de Viseu

                  DEMGi – Departamento de Engenharia Mecânica e Gestão industrial

(peso específico, viscosidade); velocidade do escoamento; características da parede (rugosidade);
comprimento das condutas e quantidade de conexões e acessórios e regime de escoamento
(laminar ou turbulento).
      Então, a perda de pressão será dada pela seguinte função:

                                                                    (
                                                      ∆P = F d , ρ , µ, V , ε , ∆l                )                                          (1.10)

      A análise dimensional para as perdas de carga vai ser realizada pelo método dos π’s de

Buckingham. Como se pode constatar, o nº de variáveis, n, neste caso são 7: d, ?, µ, V , e, ?l e
?P.
      Sendo o número de dimensões i=3, têm-se k grupos adimensionais ou π’s, traduzindo-se em
k = n - i = 7 - 3 = 4.
      Através do quadro seguinte, vai obter-se uma base para a determinação dos π’s:


                               ∆P                 V        d ∆l             ρ               µ                      ε
                          M L-1 T-2 L T-1 L L M L-3 M L-1 T-1                                                      L

                                      Tabela 1 – Listagem das dimensões de cada variável.


      Para a escolha da base é necessário ter em conta que : nela devem constar todas as dimensões
presentes; a variável a explicitar não pode pertencer à base e, para além disso, é conveniente que
uma das variáveis contenha apenas uma dimensão, de forma a garantir que os elementos da base
não formem um grupo adimensional.

      Portanto, a base escolhida, entre outras possibilidades, é ( d , V , ρ ) . Contudo, há ainda que
verificar se a base escolhida não é adimensional, ou seja, que esta apresenta solução trivial:


                                                ( MLT ) 0 = ( L) a ( LT −1 ) b ( ML−3 )c


                                 0 = c             c = 0
                                                   
                                  0 = a + b − 3c ⇔ a = 0 , logo a solução é trivial.
                                  0 = −b           b = 0
                                                   




                    Campus Politécnico, 3501 Repeses – tel nr +351.232480543/7 – fax nr +351.232424651 – email demgi@mail.estv.ipv.pt
                                                                                                                                                   7
Escola Superior de Tecnologia do Instituto Politécnico de Viseu

                      DEMGi – Departamento de Engenharia Mecânica e Gestão industrial


   Determinação dos π’s :
                                              b                                                                                     b
                     π 1 = ∆P1 d a V ρ c                                                                     π 2 = ∆l 1 d a V ρ c

  ( MLT )       = ( ML−1T −2 ) ( L ) ( LT −1 ) ( ML−3 )                                   ( MLT )0 = ( L )1 ( L) a ( LT −1 )                     ( ML )
         0                       1        a              b                c                                                                  b       −3 c


                                                                                                 0 = c                c = 0
        0 = 1 + c             c = − 1                                                                               
                                                                                               0 = 1 + a + b − 3c ⇔  a = −1
        0 = −1 + a + b − 3c ⇔  a = 0                                                           0 = −1b              b = 0
        0 = −2 − 1b           b = − 2                                                                               
                              
                                     ∆P                                                                                       ∆l
                                                                                                                    π2 =
                        π1 =              2                                                                                   d
                                 ρ ⋅V

                                          b                                                                                          b
                     π 3 = µ 1d a V ρ c                                                                         π 4 = ε 1d a V ρ c

  ( MLT )       = ( ML−1T −1 ) ( L ) ( LT −1 ) ( ML−3 )                                     ( MLT )          = ( L ) ( L) ( LT −1 ) ( ML−3 )
            0                    1        a              b                c                              0            1        a                 b          c



        0 = 1 + c                c = − 1                                                         0 = c                c = 0
                                                                                                                      
         0 = − 1 + a + b − 3c ⇔  a = − 1                                                         0 = 1 + a + b − 3c ⇔  a = −1
        0 = −1 − 1b              b = − 1                                                         0 = −1b              b = 0
                                                                                                                      
                            µ                                                                                        ε
                   π3 =                                                                                        π4 =
                         ρ ⋅V ⋅ d                                                                                    d




   Como π 1 = F (π 2 ,π 3 , π 4 ) , inverte-se π3 , obtendo-se:

                                                         2∆P    ∆l d ⋅V ⋅ ρ ε 
                                                            = F ,          ,                                                                                  (1.11)
                                                                       µ
                                                               2
                                                         ρV    d            d

   Sabe-se que o comprimento e o diâmetro são constantes para uma dada região da conduta,
pelo que, ∆l / d é constante, podendo passar-se para fora da função. Sabe-se ainda que,
ρ ⋅V ⋅ D
         corresponde ao número de Reynolds:
   µ

                                                              2∆ P            ∆l      ε
                                                                          =     F  Re,                                                                        (1.12)
                                                             ρ ⋅V
                                                                      2
                                                                              d       d

                                                  ε
   Finalmente, é prático designar a função F  Re,  como factor de atrito, utilizando-se para
                                                   
                                                 d
o efeito a notação f. Deste modo, a fórmula final destas considerações dimensionais equivale à
expressão (1.2).



                         Campus Politécnico, 3501 Repeses – tel nr +351.232480543/7 – fax nr +351.232424651 – email demgi@mail.estv.ipv.pt
                                                                                                                                                                    8
Escola Superior de Tecnologia do Instituto Politécnico de Viseu

                   DEMGi – Departamento de Engenharia Mecânica e Gestão industrial

    A introdução do número 2, nas equações anteriores, corresponde à inclusão de um factor de
correcção de energia cinética, α , que assume o valor referido para um escoamento laminar
totalmente desenvolvido. Refira-se que, para um escoamento turbulento numa conduta o valor do
factor de correcção assume valores na gama de 1.4 a 1.11, sendo usualmente aproximado a 1.



5. Resultados


5.1. Trajecto 1

         Características da conduta:                                                            Propriedades da água ( T = 2 0 º C ):
         d = 17 mm                                                                               ρ = 998 kg m3
         ε = 0,001 mm                                                                            µ = 1, 0 × 10−3 kg ( m ⋅ s )
         L = 800 mm




                                                 V  m3 
                                                                      ∆t [s]                h1 [ m]              h2 [ m]
                                 1                 0,02                    35                 0,925                0,585
                                 2                 0,01                    20                 0,813                0,624
                                 3                0,004                    34                 0,692                0,670

                                 Tabela 2 – Dados registados durante o trabalho experimental.



5.1.1.    Determinação da velocidade de escoamento

    O caudal do escoamento obtém-se a partir da equação

                                                                      & V
                                                                      V=                                                                      (1.13)
                                                                         ∆t
    A velocidade calcula-se a partir do caudal e da área de secção da conduta, através da relação

                                                                                V&
                                                                       V=                                                                     (1.14)
                                                                                A
           π 2
onde A =     d .
           4


    Fazendo-se as devidas substituições, obtêm-se os valores apresentados na tabela 3.


                     Campus Politécnico, 3501 Repeses – tel nr +351.232480543/7 – fax nr +351.232424651 – email demgi@mail.estv.ipv.pt
                                                                                                                                                    9
Escola Superior de Tecnologia do Instituto Politécnico de Viseu

               DEMGi – Departamento de Engenharia Mecânica e Gestão industrial


                                                                   &
                                                                  V m 3 s              V [m s]
                                                                          
                                                   1              5,71× 10− 4             2,52
                                                   2              5,00 × 10−4             2,20
                                                   3              1,18× 10−4              0,518

                                       Tabela 3 – Caudais e velocidades dos escoamentos.



5.1.2.   Determinação da perda de carga por atrito na conduta

    Considerando a viscosidade dinâmica da água µ = 1, 0 × 10−3 kg ( m ⋅ s ) e a massa volúmica

ρ = 998 kg m3 , calcula-se o número de Reynolds do escoamento

                                              ρVd 998 ⋅ 2,52 ⋅ 17 × 10−3
                                 Re d =          =                       = 42754,3
                                               µ        1, 0 × 10−3
    A rugosidade relativa para o PVC ( ε = 0,001 mm ) é
                                                     ε 0,001
                                                       =     = 5,88 × 10−5
                                                     d   17
    Com o número de Reynolds do escoamento e a rugosidade relativa da conduta, retira-se, do
diagrama de Moody, um valor para o coeficiente de atrito de Darcy: f ; 0,022 .
    De outra forma, pode-se determinar o coeficiente de atrito de Darcy pela equação de
Colebrook-White (1.6)

                                   1                 5,88 × 10−5      2,51     
                                       ; −2,0 ⋅ log              +             
                                                        3,7        42754,3 ⋅ f 
                                     f                                         
obtendo-se um coeficiente de atrito de Darcy f ; 0,022 .
    A perda de carga por atrito de um escoamento calcula-se pela equação (1.2)
                                                     800 ×103 2,52 2
                                       h f = 0,022 ⋅           ⋅        ; 0,34 m
                                                      17 × 103 2 ⋅ 9,81


    Outro método para calcular a perda de carga por atrito, é através da equação (1.9), deduzida
a partir da equação de Bernoulli. Considera-se ∆z = 0 , porque a conduta é horizontal, e ht = hf ,

uma vez que não se consideram as perdas de carga localizadas
                                                            ∆P ρ ⋅ g ⋅ ( h1 − h2 )
                                                  hf =          =
                                                            ρ.g      ρ⋅g
logo,

                  Campus Politécnico, 3501 Repeses – tel nr +351.232480543/7 – fax nr +351.232424651 – email demgi@mail.estv.ipv.pt
                                                                                                                                                10
Escola Superior de Tecnologia do Instituto Politécnico de Viseu

               DEMGi – Departamento de Engenharia Mecânica e Gestão industrial


                                     h f = ( h1 − h2 ) = ( 0,925 − 0,585) = 0,34 m


    Efectuam-se os mesmos cálculos para determinar as perdas de carga por atrito para os outros
dois escoamentos. Os resultados são apresentados na tabela 4.

                                   &
                                  V m 3 s               V [m s]                 Red                    f                h f [ m]
                                          
                   1              5,71× 10− 4             2,52                42754,3                 0,0220                0,34
                   2              5,00 × 10−4             2,20                37325,2                 0,0225                0,26
                   3              1,18× 10−4              0,518                 8788,4                0,0320               0,022

               Tabela 4 – Resultados obtidos para as perdas de carga por atrito nos escoamentos.



5.1.3.   Representação gráfica


                             0,04
                            0,035
                             0,03
                            0,025
                           f 0,02
                            0,015
                             0,01
                            0,005
                                0
                                         0        10000         20000        30000 40000                50000

                                                                         Re d

            Gráfico 1 – Coeficiente de Darcy em função do número de Reynolds para três escoamentos
                                                       com diferentes caudais.



                               0,4
                              0,35
                               0,3
                              0,25
                 h f [ m]      0,2
                              0,15
                               0,1
                              0,05
                                 0
                                     0              0,5             1             1,5             2              2,5             3

                                                                        V [m s ]


                 Gráfico 2 – Perdas de carga por atrito em função da velocidade de escoamento.
                  Campus Politécnico, 3501 Repeses – tel nr +351.232480543/7 – fax nr +351.232424651 – email demgi@mail.estv.ipv.pt
                                                                                                                                                11
Escola Superior de Tecnologia do Instituto Politécnico de Viseu

                DEMGi – Departamento de Engenharia Mecânica e Gestão industrial

5.2. Trajecto 2a

         Características da conduta:                                                            Propriedades da água ( T = 2 0 º C ):
         d = 17 mm                                                                               ρ = 998 kg m3
         D = 28,6 mm                                                                             µ = 1, 0 × 10−3 kg ( m ⋅ s )
         ε = 0,001 mm
         L = 150 mm




                                                 V  m3 
                                                                      ∆t [s]                 h1 [ m]             h2 [ m]
                                 1                 0,01                   19                   0,805               0,774
                                 2                 0,01                    25                  0,750               0,738
                                 3                0,003                    39                  0,717               0,716

                              Tabela 5 – Dados registados durante o trabalho experimental.



5.2.1.    Determinação da velocidade de escoamento

    A partir da equação (1.13) calcula-se o caudal. Com o valor do caudal determina-se a
velocidade para cada um dos diâmetros da expansão, através da equação (1.14); obtêm-se os
valores apresentados na tabela 6.


                                                           &
                                                          V m 3 s              Vd [m s]             VD [ m s ]
                                                                  
                                           1              5,26 × 10− 4              2,32                  0,82
                                           2              4,00 × 10−4               1,76                  0,62
                                           3              7,69 × 10−5               0,34                  0,12

                                     Tabela 6 – Caudais e velocidades dos escoamentos.



5.2.2.    Determinação das perdas localizadas na expansão


    5.2.2.1.   Desprezando as perdas por atrito

    Pela equação de Bernoulli determina-se a perda de carga total do sistema (considera-
se ∆z = 0 , porque a conduta é horizontal)
                                                            2                             2
                                                p1 V 1        p V2
                                                  +    + z1 = 2 +   + z2 + ht
                                               ρ g 2g        ρ g 2g

                     Campus Politécnico, 3501 Repeses – tel nr +351.232480543/7 – fax nr +351.232424651 – email demgi@mail.estv.ipv.pt
                                                                                                                                                     12
Escola Superior de Tecnologia do Instituto Politécnico de Viseu

                 DEMGi – Departamento de Engenharia Mecânica e Gestão industrial


   Sabendo que V1 = Vd e V2 = VD , vem

                                                            ρ g ( h1 − h2 ) Vd2 − VD
                                                                                   2
                                                   ht =                    +
                                                                 ρg            2g
logo
                                                                                  Vd2 − VD
                                                                                         2
                                                      ht = ( h1 − h2 ) +                                                                     (1.15)
                                                                                     2g
   Fazendo-se as devidas substituições, calcula-se a perda localizada na expansão
                                                                           2,322 − 0,822
                                 ht = ( 0,805 − 0,774 ) +                                = 0,27 m
                                                                              2 ⋅ 9,81
   Como se desprezam as perdas de carga por atrito, ht = hl . Assim pela equação (1.3), vem o
coeficiente de perda localizada
                                                     hl       0,27
                                            K=           =              = 0,98
                                                    V 2 g 2,32 2 ⋅ 9,81
                                                        2     2




   Efectuam-se os mesmos cálculos para determinar as perdas de carga localizadas para os
outros dois escoamentos. Os resultados são apresentados na tabela 7.

                                     &
                                    V m 3 s               Vd [m s]            VD [ m s ]              hl [ m]                 K
                                            
                    1              5,26 × 10− 4               2,32                 0,82                  0,27                 0,98
                    2              4,00 × 10−4                1,76                 0,62                  0,15                 0,95
                    3              7,69 × 10−5                0,34                 0,12                0,0061                 1,03

              Tabela 7 – Resultados obtidos para as perdas de carga localizadas nos três escoamentos.



   5.2.2.2.     Considerando as perdas de carga por atrito

   Nesta situação, a perda de carga total do sistema vai depender, para além das perdas
localizadas na expansão, das perdas de carga por atrito na conduta de menor diâmetro e na
conduta de maior diâmetro. Assim
                                                             ht = h fd + h fD + hl                                                           (1.16)

       A distância entre as tomadas de pressão é L = 150 mm . Considerando que a expansão se

localiza a uma distância L 2 das tomadas de pressão, o comprimento da conduta de menor

diâmetro será Ld = 75 mm e o comprimento da conduta de maior diâmetro será LD = 75 mm .

                    Campus Politécnico, 3501 Repeses – tel nr +351.232480543/7 – fax nr +351.232424651 – email demgi@mail.estv.ipv.pt
                                                                                                                                                  13
Escola Superior de Tecnologia do Instituto Politécnico de Viseu

               DEMGi – Departamento de Engenharia Mecânica e Gestão industrial

   5.2.2.2.1. Determinação da perda de carga por atrito na conduta de menor diâmetro

   Considerando a viscosidade dinâmica da água µ = 1, 0 × 10−3 kg ( m ⋅ s ) e a massa volúmica

ρ = 998 kg m3 , calcula-se o número de Reynolds do escoamento

                                             ρVd 998 ⋅ 2,32 ⋅17 ×10−3
                                Re d =          =                     = 39361,12
                                              µ       1, 0 ×10−3
   A rugosidade relativa para o PVC ( ε = 0,001 mm ) é

                                                     ε 0,001
                                                       =     = 5,88 × 10−5
                                                     d   17
   Determina-se o coeficiente de atrito de Darcy pela equação de Colebrook-White:

                                  1                 5,88 ×10−5       2,51     
                                      ; −2,0 ⋅ log             +              
                                                       3,7       39361,12 ⋅ f 
                                    f                                         
   Obtém-se, um coeficiente de atrito de Darcy f ; 0,022 .


   A perda de carga por atrito de um escoamento calcula-se pela equação (1.2), sendo
L = Ld = 75 mm

                                                             75 ×103 2,32 2
                                      h fd = 0,022 ⋅                 ⋅         ; 0,027 m
                                                             17 × 103 2 ⋅ 9,81

   5.2.2.2.2. Determinação da perda de carga por atrito na conduta de maior diâmetro

   Calcula-se da mesma forma que o anterior, para D = 28,6 mm , V = VD = 0,82 m s e

L = LD = 75 mm . Obtém-se uma perda de carga por atrito h f D = 0,0025 m .


   Assim, pela equação (1.16), determina-se a perda localizada na expansão
                                       hl = 0,27 − ( 0,027 + 0,0025 ) = 0,24 m

e consequentemente, através da equação (1.3) calcula-se o coeficiente de perda localizada
                                                   hl       0,24
                                          K=           =              = 0,87
                                                  V 2 g 2,32 2 ⋅ 9,81
                                                      2     2




   Efectuam-se os mesmos cálculos para determinar as perdas de carga localizadas para os
outros dois escoamentos. Os resultados são apresentados na tabela 7.

                  Campus Politécnico, 3501 Repeses – tel nr +351.232480543/7 – fax nr +351.232424651 – email demgi@mail.estv.ipv.pt
                                                                                                                                                14
Escola Superior de Tecnologia do Instituto Politécnico de Viseu

                   DEMGi – Departamento de Engenharia Mecânica e Gestão industrial

                    &
                   V m 3 s           Vd [m s]             VD [ m s ]              hfd [ m]             h f D [ m]            hl [ m]     K
                           
         1        5,26 × 10− 4            2,32                  0,82                0,027                0,0025                 0,24      0,87
         2        4,00 × 10−4             1,76                  0,62                0,017                0,0014                 0,13      0,82
         3        7,69 × 10−5             0,34                  0,12             9,36 × 10−4            8,1× 10− 5             0,0051     0,87

                 Tabela 8 – Resultados obtidos para as perdas de carga localizadas nos três escoamentos.



5.2.3.       Valores teóricos das perdas localizadas na expansão

    Os valores teóricos para as perdas localizadas numa expansão são calculados pela equação
(1.4).

                                                 &
                                                V m 3 s               V [m s ]               hl [ m]                  K
                                                        
                                 1              5,26 × 10− 4               2,32                 0,12                  0,42
                                 2              4,00 × 10−4                1,76                0,066                  0,42
                                 3              7,69 × 10−5                0,34               0,0025                  0,42

                                          Tabela 9 – Valores teóricos das perdas localizadas.



6. Conclusões

    No trajecto 1 determinaram-se as perdas de carga por atrito numa conduta, para três caudais
diferentes. Verifica-se que as perdas de carga diminuem à medida que o caudal é reduzido.
Comprova-se assim, que as perdas de carga por atrito, para uma conduta com comprimento,
rugosidade e diâmetro constantes, dependem apenas da velocidade, e são tanto maiores quanto
maior a velocidade.
    Verifica-se também que o coeficie nte de atrito de Darcy não varia significativamente com o
número de Reynolds, uma vez que se tratam de escoamentos em regime turbulento.
    No trajecto 2a determinaram-se as perdas de carga localizadas na expansão. As perdas
localizadas dependem, de igual forma, da velocidade.
    As perdas localizadas na expansão são muito superiores às perdas de carga devidas ao atrito.
Por isso, os resultados obtidos, com perdas por atrito e sem perdas por atrito, não são muito
diferentes. Quando se desprezam as perdas devidas ao atrito, o coeficiente de perda localizada é
um pouco mais elevado, uma vez que todas as perdas na expansão são contabilizadas como
sendo localizadas.
    Na prática os valores obtidos para as perdas localizadas são maiores que os valores teóricos,
calculados a partir de uma relação entre os diâmetros das condutas.
                      Campus Politécnico, 3501 Repeses – tel nr +351.232480543/7 – fax nr +351.232424651 – email demgi@mail.estv.ipv.pt
                                                                                                                                                    15
Escola Superior de Tecnologia do Instituto Politécnico de Viseu

                 DEMGi – Departamento de Engenharia Mecânica e Gestão industrial

7. Nomenclatura

A      Área, m 2
d      Diâmetro menor, m
D      Diâmetro maior, m
f      Coeficiente de atrito de Darcy, adimensional
g      Aceleração da gravidade, m s 2
h      Altura manométrica, m
hB     Perda de carga na bomba, m
hf     Perda de carga por atrito, m
hl     Perda de carga localizada, m
ht     Perda de carga total, m
hT     Perda de carga na turbina, m
K      Coeficiente de perda de carga localizada, adimensional
L      Comprimento, m
p      Pressão, Pa
Re     Número de Reynolds, adimensional
V      Volume, m 3
V&     Caudal volúmico, m3 s
V      Velocidade, m s
z      Cota, m

Alfabeto grego

α      Factor de correcção de energia cinética, adimensional
ε      Rugosidade, m
µ      Viscosidade dinâmica, kg ⋅ m −1 ⋅ s −1
ρ      Massa volúmica, kg m3



8. Referências

[1]    White, Frank M., Mecânica dos Fluidos, 4ª Edição, McGraw-Hill, 2002;

[ 2]   Potter, Merle C. & Wiggert, David C., Mechanics of Fluids, Second Edition, Prentice

       Hall, 1997;
[ 3]   Shames, Irving H., Mechanics of Fluids, Third Edition, McGraw-Hill, 1992.


                   Campus Politécnico, 3501 Repeses – tel nr +351.232480543/7 – fax nr +351.232424651 – email demgi@mail.estv.ipv.pt
                                                                                                                                                 16

More Related Content

What's hot

Apostila hidráulica
Apostila hidráulicaApostila hidráulica
Apostila hidráulicaOuatt Brasil
 
AMBIENTE DE SIMULAÇÃO DE UM PIG INSTRUMENTADO COM O USO DO LABVIEW
AMBIENTE DE SIMULAÇÃO DE UM PIG INSTRUMENTADO COM O USO DO LABVIEWAMBIENTE DE SIMULAÇÃO DE UM PIG INSTRUMENTADO COM O USO DO LABVIEW
AMBIENTE DE SIMULAÇÃO DE UM PIG INSTRUMENTADO COM O USO DO LABVIEWAssis Júnior
 
Escoamento Laminar e turbulento
Escoamento Laminar e turbulentoEscoamento Laminar e turbulento
Escoamento Laminar e turbulentoDiego Henrique
 
Laboratorio 04 perda_de_carga
Laboratorio 04 perda_de_cargaLaboratorio 04 perda_de_carga
Laboratorio 04 perda_de_cargachicopaulera
 
Hidraulica basica condutos forcados
Hidraulica basica   condutos forcadosHidraulica basica   condutos forcados
Hidraulica basica condutos forcadosMayara Marques
 
Medição de nível
Medição de nívelMedição de nível
Medição de nívelAlan Sousa
 
AÇÃO DO VENTO EM FACHADAS DE EDIFÍCIOS ALTOS: ESTUDO BIBLIOGRÁFICO COMPARATIV...
AÇÃO DO VENTO EM FACHADAS DE EDIFÍCIOS ALTOS: ESTUDO BIBLIOGRÁFICO COMPARATIV...AÇÃO DO VENTO EM FACHADAS DE EDIFÍCIOS ALTOS: ESTUDO BIBLIOGRÁFICO COMPARATIV...
AÇÃO DO VENTO EM FACHADAS DE EDIFÍCIOS ALTOS: ESTUDO BIBLIOGRÁFICO COMPARATIV...Rodrigo Andrade Brígido
 
Perdas de cargas em tubulações
Perdas de cargas em tubulaçõesPerdas de cargas em tubulações
Perdas de cargas em tubulaçõesVivi Basilio
 
Sesam : Ferramentas de Análise de Pipelines e Flowlines
Sesam : Ferramentas de Análise de Pipelines e FlowlinesSesam : Ferramentas de Análise de Pipelines e Flowlines
Sesam : Ferramentas de Análise de Pipelines e FlowlinesJoão Henrique Volpini Mattos
 
Experiencia 5 (1) hidraulica
Experiencia 5 (1) hidraulicaExperiencia 5 (1) hidraulica
Experiencia 5 (1) hidraulicaJoe Agassi
 
Novo guia de_ensaio_laboratorial_technov
Novo guia de_ensaio_laboratorial_technovNovo guia de_ensaio_laboratorial_technov
Novo guia de_ensaio_laboratorial_technovMëḼÿssä MṏƦä
 
Exercicios resolvidos hidraulica
Exercicios resolvidos hidraulicaExercicios resolvidos hidraulica
Exercicios resolvidos hidraulicafernando correa
 
Golpe ariete
Golpe ariete Golpe ariete
Golpe ariete ociam
 

What's hot (18)

Apostila hidráulica
Apostila hidráulicaApostila hidráulica
Apostila hidráulica
 
AMBIENTE DE SIMULAÇÃO DE UM PIG INSTRUMENTADO COM O USO DO LABVIEW
AMBIENTE DE SIMULAÇÃO DE UM PIG INSTRUMENTADO COM O USO DO LABVIEWAMBIENTE DE SIMULAÇÃO DE UM PIG INSTRUMENTADO COM O USO DO LABVIEW
AMBIENTE DE SIMULAÇÃO DE UM PIG INSTRUMENTADO COM O USO DO LABVIEW
 
Hidraulica
HidraulicaHidraulica
Hidraulica
 
CIT04-0128
CIT04-0128CIT04-0128
CIT04-0128
 
Escoamento Laminar e turbulento
Escoamento Laminar e turbulentoEscoamento Laminar e turbulento
Escoamento Laminar e turbulento
 
Laboratorio 04 perda_de_carga
Laboratorio 04 perda_de_cargaLaboratorio 04 perda_de_carga
Laboratorio 04 perda_de_carga
 
Hidraulica basica condutos forcados
Hidraulica basica   condutos forcadosHidraulica basica   condutos forcados
Hidraulica basica condutos forcados
 
Bom
BomBom
Bom
 
Medição de nível
Medição de nívelMedição de nível
Medição de nível
 
AÇÃO DO VENTO EM FACHADAS DE EDIFÍCIOS ALTOS: ESTUDO BIBLIOGRÁFICO COMPARATIV...
AÇÃO DO VENTO EM FACHADAS DE EDIFÍCIOS ALTOS: ESTUDO BIBLIOGRÁFICO COMPARATIV...AÇÃO DO VENTO EM FACHADAS DE EDIFÍCIOS ALTOS: ESTUDO BIBLIOGRÁFICO COMPARATIV...
AÇÃO DO VENTO EM FACHADAS DE EDIFÍCIOS ALTOS: ESTUDO BIBLIOGRÁFICO COMPARATIV...
 
Perdas de cargas em tubulações
Perdas de cargas em tubulaçõesPerdas de cargas em tubulações
Perdas de cargas em tubulações
 
Sesam : Ferramentas de Análise de Pipelines e Flowlines
Sesam : Ferramentas de Análise de Pipelines e FlowlinesSesam : Ferramentas de Análise de Pipelines e Flowlines
Sesam : Ferramentas de Análise de Pipelines e Flowlines
 
Experiencia 5 (1) hidraulica
Experiencia 5 (1) hidraulicaExperiencia 5 (1) hidraulica
Experiencia 5 (1) hidraulica
 
Novo guia de_ensaio_laboratorial_technov
Novo guia de_ensaio_laboratorial_technovNovo guia de_ensaio_laboratorial_technov
Novo guia de_ensaio_laboratorial_technov
 
Exercicios resolvidos hidraulica
Exercicios resolvidos hidraulicaExercicios resolvidos hidraulica
Exercicios resolvidos hidraulica
 
Golpe ariete
Golpe ariete Golpe ariete
Golpe ariete
 
Perda de carga valterv.1
Perda de carga  valterv.1Perda de carga  valterv.1
Perda de carga valterv.1
 
Elementos de Concreto Armado - Armaduras
Elementos de Concreto Armado - ArmadurasElementos de Concreto Armado - Armaduras
Elementos de Concreto Armado - Armaduras
 

Viewers also liked

Energias Alternativas
Energias AlternativasEnergias Alternativas
Energias Alternativasleirmmourao
 
Energias Alternativas
Energias AlternativasEnergias Alternativas
Energias Alternativasmithofer
 
Energias alternativas saiba quais são e como funcionam
Energias alternativas saiba quais são e como funcionamEnergias alternativas saiba quais são e como funcionam
Energias alternativas saiba quais são e como funcionamalessandravezani
 
Sustentabilidade e Energias Alternativas
Sustentabilidade e Energias AlternativasSustentabilidade e Energias Alternativas
Sustentabilidade e Energias AlternativasDouglas Ramos
 
Erik erikson - Desenvolvimento Psicossocial
Erik erikson - Desenvolvimento PsicossocialErik erikson - Desenvolvimento Psicossocial
Erik erikson - Desenvolvimento Psicossocialmarta12l
 
Energias alternativas
Energias alternativasEnergias alternativas
Energias alternativasEspa Cn 8
 
O desenvolvimento infantil de 0 a 6 e a vida pré-escolar
O desenvolvimento infantil de 0 a 6 e a vida pré-escolarO desenvolvimento infantil de 0 a 6 e a vida pré-escolar
O desenvolvimento infantil de 0 a 6 e a vida pré-escolarWagner Luiz Garcia Teodoro
 

Viewers also liked (10)

Energias Alternativas
Energias AlternativasEnergias Alternativas
Energias Alternativas
 
Energias Alternativas
Energias AlternativasEnergias Alternativas
Energias Alternativas
 
Energias alternativas
Energias alternativasEnergias alternativas
Energias alternativas
 
Energias alternativas saiba quais são e como funcionam
Energias alternativas saiba quais são e como funcionamEnergias alternativas saiba quais são e como funcionam
Energias alternativas saiba quais são e como funcionam
 
Sustentabilidade e Energias Alternativas
Sustentabilidade e Energias AlternativasSustentabilidade e Energias Alternativas
Sustentabilidade e Energias Alternativas
 
Energias Alternativas
Energias AlternativasEnergias Alternativas
Energias Alternativas
 
Energias Alternativas
Energias AlternativasEnergias Alternativas
Energias Alternativas
 
Erik erikson - Desenvolvimento Psicossocial
Erik erikson - Desenvolvimento PsicossocialErik erikson - Desenvolvimento Psicossocial
Erik erikson - Desenvolvimento Psicossocial
 
Energias alternativas
Energias alternativasEnergias alternativas
Energias alternativas
 
O desenvolvimento infantil de 0 a 6 e a vida pré-escolar
O desenvolvimento infantil de 0 a 6 e a vida pré-escolarO desenvolvimento infantil de 0 a 6 e a vida pré-escolar
O desenvolvimento infantil de 0 a 6 e a vida pré-escolar
 

Similar to Fluid Mechanics Pipe Flow

PME2230-RL-Escoamento_Turbulento-Medidores_Vazao-site-2013.pdf
PME2230-RL-Escoamento_Turbulento-Medidores_Vazao-site-2013.pdfPME2230-RL-Escoamento_Turbulento-Medidores_Vazao-site-2013.pdf
PME2230-RL-Escoamento_Turbulento-Medidores_Vazao-site-2013.pdfssuser8658c3
 
Relatório de Mecânica do Fluídos
Relatório de Mecânica do FluídosRelatório de Mecânica do Fluídos
Relatório de Mecânica do FluídosBianca Solanho
 
Galerias de drenagem de guas pluviais com tubos
Galerias de drenagem de guas pluviais com tubosGalerias de drenagem de guas pluviais com tubos
Galerias de drenagem de guas pluviais com tubosJupira Silva
 
Galerias de drenagem de águas pluviais com tubos de concreto
Galerias de drenagem de águas pluviais com tubos de concretoGalerias de drenagem de águas pluviais com tubos de concreto
Galerias de drenagem de águas pluviais com tubos de concretoJupira Silva
 
TRAVESSIA DO CANAL DE CHACAO: BALANÇO ASSÍNCRONO, UMA ABORDAGEM ANALÍTICA E G...
TRAVESSIA DO CANAL DE CHACAO: BALANÇO ASSÍNCRONO, UMA ABORDAGEM ANALÍTICA E G...TRAVESSIA DO CANAL DE CHACAO: BALANÇO ASSÍNCRONO, UMA ABORDAGEM ANALÍTICA E G...
TRAVESSIA DO CANAL DE CHACAO: BALANÇO ASSÍNCRONO, UMA ABORDAGEM ANALÍTICA E G...lvaroMenezes6
 
fdocumentos.com_tcc-calculo-da-malha-de-aterramento-da-subestacao-de-uma-usin...
fdocumentos.com_tcc-calculo-da-malha-de-aterramento-da-subestacao-de-uma-usin...fdocumentos.com_tcc-calculo-da-malha-de-aterramento-da-subestacao-de-uma-usin...
fdocumentos.com_tcc-calculo-da-malha-de-aterramento-da-subestacao-de-uma-usin...OdairGhilherminodeOl
 
Apostila de mec solos ba ii
Apostila de mec solos ba iiApostila de mec solos ba ii
Apostila de mec solos ba iiislenrocha
 
CONCRETO COMPACTADO COM ROLO (CCR)
CONCRETO COMPACTADO COM ROLO (CCR)CONCRETO COMPACTADO COM ROLO (CCR)
CONCRETO COMPACTADO COM ROLO (CCR)LeomarValmorbida
 
Experiencia medidores de vazao
Experiencia medidores de vazaoExperiencia medidores de vazao
Experiencia medidores de vazaoDANIELLE BORGES
 
Mecânica dos Fluidos para Engenharia Química: o estudo de instalações de bomb...
Mecânica dos Fluidos para Engenharia Química: o estudo de instalações de bomb...Mecânica dos Fluidos para Engenharia Química: o estudo de instalações de bomb...
Mecânica dos Fluidos para Engenharia Química: o estudo de instalações de bomb...Raimundo Ignacio
 
96884834 microsoft-word-relatorio-de-ensaio-em-tunel-de-vento-final
96884834 microsoft-word-relatorio-de-ensaio-em-tunel-de-vento-final96884834 microsoft-word-relatorio-de-ensaio-em-tunel-de-vento-final
96884834 microsoft-word-relatorio-de-ensaio-em-tunel-de-vento-finalWillian Dias da Cruz
 
18.ago esmeralda 14.15_263_edp
18.ago esmeralda 14.15_263_edp18.ago esmeralda 14.15_263_edp
18.ago esmeralda 14.15_263_edpitgfiles
 
CASE - Diagnóstico de Falhas em Cabos MT
CASE - Diagnóstico de Falhas em Cabos MTCASE - Diagnóstico de Falhas em Cabos MT
CASE - Diagnóstico de Falhas em Cabos MTAlexandre Grossi
 
Nbr 5422 nb 182 projeto de linhas aereas de transmissao de energia eletrica
Nbr 5422 nb 182   projeto de linhas aereas de transmissao de energia eletricaNbr 5422 nb 182   projeto de linhas aereas de transmissao de energia eletrica
Nbr 5422 nb 182 projeto de linhas aereas de transmissao de energia eletricaFrederico_Koch
 
AULA 4 - MISTURA RAPIDA.pdf
AULA 4 - MISTURA RAPIDA.pdfAULA 4 - MISTURA RAPIDA.pdf
AULA 4 - MISTURA RAPIDA.pdfSarahSucupira2
 
48294078 i3130003-calculo-tracao-dos-cabos
48294078 i3130003-calculo-tracao-dos-cabos48294078 i3130003-calculo-tracao-dos-cabos
48294078 i3130003-calculo-tracao-dos-cabosMarcelo Moraes
 
Apostila de Hidrologia (Profa. Ticiana Studart) - Capítulo 9: Previsão de Enc...
Apostila de Hidrologia (Profa. Ticiana Studart) - Capítulo 9: Previsão de Enc...Apostila de Hidrologia (Profa. Ticiana Studart) - Capítulo 9: Previsão de Enc...
Apostila de Hidrologia (Profa. Ticiana Studart) - Capítulo 9: Previsão de Enc...Danilo Max
 
AVALIAÇÃO DO ESCOAMENTO DE FLUIDOS INCOMPRESSÍVEIS EM TUBULAÇÕES USANDO CFD
AVALIAÇÃO DO ESCOAMENTO DE FLUIDOS INCOMPRESSÍVEIS EM TUBULAÇÕES USANDO CFDAVALIAÇÃO DO ESCOAMENTO DE FLUIDOS INCOMPRESSÍVEIS EM TUBULAÇÕES USANDO CFD
AVALIAÇÃO DO ESCOAMENTO DE FLUIDOS INCOMPRESSÍVEIS EM TUBULAÇÕES USANDO CFDDélio Barroso de Souza
 

Similar to Fluid Mechanics Pipe Flow (20)

PME2230-RL-Escoamento_Turbulento-Medidores_Vazao-site-2013.pdf
PME2230-RL-Escoamento_Turbulento-Medidores_Vazao-site-2013.pdfPME2230-RL-Escoamento_Turbulento-Medidores_Vazao-site-2013.pdf
PME2230-RL-Escoamento_Turbulento-Medidores_Vazao-site-2013.pdf
 
Relatório de Mecânica do Fluídos
Relatório de Mecânica do FluídosRelatório de Mecânica do Fluídos
Relatório de Mecânica do Fluídos
 
Galerias de drenagem de guas pluviais com tubos
Galerias de drenagem de guas pluviais com tubosGalerias de drenagem de guas pluviais com tubos
Galerias de drenagem de guas pluviais com tubos
 
Galerias de drenagem de águas pluviais com tubos de concreto
Galerias de drenagem de águas pluviais com tubos de concretoGalerias de drenagem de águas pluviais com tubos de concreto
Galerias de drenagem de águas pluviais com tubos de concreto
 
TRAVESSIA DO CANAL DE CHACAO: BALANÇO ASSÍNCRONO, UMA ABORDAGEM ANALÍTICA E G...
TRAVESSIA DO CANAL DE CHACAO: BALANÇO ASSÍNCRONO, UMA ABORDAGEM ANALÍTICA E G...TRAVESSIA DO CANAL DE CHACAO: BALANÇO ASSÍNCRONO, UMA ABORDAGEM ANALÍTICA E G...
TRAVESSIA DO CANAL DE CHACAO: BALANÇO ASSÍNCRONO, UMA ABORDAGEM ANALÍTICA E G...
 
2006 rojas-fonini
2006 rojas-fonini2006 rojas-fonini
2006 rojas-fonini
 
fdocumentos.com_tcc-calculo-da-malha-de-aterramento-da-subestacao-de-uma-usin...
fdocumentos.com_tcc-calculo-da-malha-de-aterramento-da-subestacao-de-uma-usin...fdocumentos.com_tcc-calculo-da-malha-de-aterramento-da-subestacao-de-uma-usin...
fdocumentos.com_tcc-calculo-da-malha-de-aterramento-da-subestacao-de-uma-usin...
 
Apostila de mec solos ba ii
Apostila de mec solos ba iiApostila de mec solos ba ii
Apostila de mec solos ba ii
 
CONCRETO COMPACTADO COM ROLO (CCR)
CONCRETO COMPACTADO COM ROLO (CCR)CONCRETO COMPACTADO COM ROLO (CCR)
CONCRETO COMPACTADO COM ROLO (CCR)
 
Experiencia medidores de vazao
Experiencia medidores de vazaoExperiencia medidores de vazao
Experiencia medidores de vazao
 
Mecânica dos Fluidos para Engenharia Química: o estudo de instalações de bomb...
Mecânica dos Fluidos para Engenharia Química: o estudo de instalações de bomb...Mecânica dos Fluidos para Engenharia Química: o estudo de instalações de bomb...
Mecânica dos Fluidos para Engenharia Química: o estudo de instalações de bomb...
 
96884834 microsoft-word-relatorio-de-ensaio-em-tunel-de-vento-final
96884834 microsoft-word-relatorio-de-ensaio-em-tunel-de-vento-final96884834 microsoft-word-relatorio-de-ensaio-em-tunel-de-vento-final
96884834 microsoft-word-relatorio-de-ensaio-em-tunel-de-vento-final
 
18.ago esmeralda 14.15_263_edp
18.ago esmeralda 14.15_263_edp18.ago esmeralda 14.15_263_edp
18.ago esmeralda 14.15_263_edp
 
CASE - Diagnóstico de Falhas em Cabos MT
CASE - Diagnóstico de Falhas em Cabos MTCASE - Diagnóstico de Falhas em Cabos MT
CASE - Diagnóstico de Falhas em Cabos MT
 
Nbr 5422 nb 182 projeto de linhas aereas de transmissao de energia eletrica
Nbr 5422 nb 182   projeto de linhas aereas de transmissao de energia eletricaNbr 5422 nb 182   projeto de linhas aereas de transmissao de energia eletrica
Nbr 5422 nb 182 projeto de linhas aereas de transmissao de energia eletrica
 
AULA 4 - MISTURA RAPIDA.pdf
AULA 4 - MISTURA RAPIDA.pdfAULA 4 - MISTURA RAPIDA.pdf
AULA 4 - MISTURA RAPIDA.pdf
 
48294078 i3130003-calculo-tracao-dos-cabos
48294078 i3130003-calculo-tracao-dos-cabos48294078 i3130003-calculo-tracao-dos-cabos
48294078 i3130003-calculo-tracao-dos-cabos
 
Apostila de Hidrologia (Profa. Ticiana Studart) - Capítulo 9: Previsão de Enc...
Apostila de Hidrologia (Profa. Ticiana Studart) - Capítulo 9: Previsão de Enc...Apostila de Hidrologia (Profa. Ticiana Studart) - Capítulo 9: Previsão de Enc...
Apostila de Hidrologia (Profa. Ticiana Studart) - Capítulo 9: Previsão de Enc...
 
AVALIAÇÃO DO ESCOAMENTO DE FLUIDOS INCOMPRESSÍVEIS EM TUBULAÇÕES USANDO CFD
AVALIAÇÃO DO ESCOAMENTO DE FLUIDOS INCOMPRESSÍVEIS EM TUBULAÇÕES USANDO CFDAVALIAÇÃO DO ESCOAMENTO DE FLUIDOS INCOMPRESSÍVEIS EM TUBULAÇÕES USANDO CFD
AVALIAÇÃO DO ESCOAMENTO DE FLUIDOS INCOMPRESSÍVEIS EM TUBULAÇÕES USANDO CFD
 
Asep1 2016.1
Asep1 2016.1Asep1 2016.1
Asep1 2016.1
 

Fluid Mechanics Pipe Flow

  • 1. ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU DEPARTAMENTO DE ENGENHARIA MECÂNICA E GESTÃO INDUSTRIAL Mecânica dos Fluidos Escoamentos no interior de condutas Álvaro Aguiar n.º 4253 José Onofre n.º 4458 Rui Portela n.º 4052 5/01/2004
  • 2. ÍNDICE 1. RESUMO 1 2. INTRODUÇÃO 1 3. DESCRIÇÃO DA INSTALAÇÃO E PROCEDIMENTOS 2 4. CONSIDERAÇÕES TEÓRICAS 3 4.1. Escoamentos interiores 3 4.1.1. Escoamento em regime laminar 4 4.1.2. Escoamento em regime turbulento 5 4.2. Equação de Bernoulli 6 4.3. Análise dimensional de uma conduta 6 5. RESULTADOS 9 5.1. Trajecto 1 9 5.1.1. Determinação da velocidade de escoamento 9 5.1.2. Determinação da perda de carga por atrito na conduta 10 5.1.3. Representação gráfica 11 5.2. Trajecto 2a 12 5.2.1. Determinação da velocidade de escoamento 12 5.2.2. Determinação das perdas localizadas na expansão 12 5.2.2.1. Desprezando as perdas por atrito 12 5.2.2.2. Considerando as perdas de carga por atrito 13 5.2.2.2.1. Determinação da perda de carga por atrito na conduta de menor diâmetro 14 5.2.2.2.2. Determinação da perda de carga por atrito na conduta de maior diâmetro 14 5.2.3. Valores teóricos das perdas localizadas na expansão 15 6. CONCLUSÕES 15 7. NOMENCLATURA 16 8. REFERÊNCIAS 16
  • 3. Escola Superior de Tecnologia do Instituto Politécnico de Viseu DEMGi – Departamento de Engenharia Mecânica e Gestão industrial 1. Resumo Este trabalho tem como objectivo o estudo experimental de escoamentos no interior de condutas. Desta forma, serão aplicados e, consequentemente, demonstrados os conhecimentos adquiridos ao caso prático do escoamento no interior de condutas com diâmetros diferentes e através de alguns acessórios. Para o efeito, recorreu-se a uma bancada hidráulica. Assim, para um dos trajectos considerados, pretende-se determinar a perda de carga por atrito na conduta e representar graficamente os valores obtidos utilizando os grupos adimensionais mais adequados. Para o segundo trajecto em análise, pretende-se determinar as perdas de carga localizadas na expansão, bem como o respectivo coeficiente de perda localizada. 2. Introdução O escoamento em condutas a várias velocidades, de vários fluidos e em vários formatos de condutas, é um problema fulcral da Mecânica dos Fluidos. Sistemas de tubagens são encontrados em quase todos os projectos de engenharia e, por isso, foram e têm sido estudados extensivamente. Contudo, o problema básico das tubagens consiste em saber qual a melhor conjugação de factores necessária para permitir o escoamento, sabendo que depende da geometria dos condutas, dos seus componentes adicionais, do caudal, das propriedades do fluido e das quedas de pressão. Tendo como objectivo o estudo de escoamentos interiores, torna-se importante definir escoamento interior de um fluido como um escoamento interno limitado por paredes, no qual o escoamento propriamente dito é dado pelo movimento das partículas que compõem o fluido. No entanto, não existe uma análise geral que possa ser aplicada ao estudo de escoamentos, mas sim soluções particulares em que se admitem simplificações de equações fundamentais, resultados da simulação numérica e resultados experimentais. A inexistência de soluções gerais deve-se, em grande parte, ao aparecimento de um fenómeno denominado turbulência. Logo, um escoamento nem sempre ocorre de igual forma. Deste modo, ao longo deste trabalho caracterizar-se-ão as diferenças entre os regimes em que poderá ocorrer o escoamento no interior de uma conduta, tendo em conta a forma do perfil de velocidades, a perda de carga e a influência da rugosidade, entre outros factores. Para além disso, deduzir-se-á uma expressão que relaciona a variação de pressão e a perda de carga numa conduta circular, considerando, para tal, a existência de perdas de carga localizadas situadas entre as tomadas de pressão e ainda, o desnível entre as mesmas. Campus Politécnico, 3501 Repeses – tel nr +351.232480543/7 – fax nr +351.232424651 – email demgi@mail.estv.ipv.pt 1
  • 4. Escola Superior de Tecnologia do Instituto Politécnico de Viseu DEMGi – Departamento de Engenharia Mecânica e Gestão industrial O recurso à análise dimensional reveste-se de um papel fundamental, já que, com esta ferramenta pode proceder-se ao estudo experimental de um escoamento e efectuar extrapolações para um escoamento semelhante. Assim, atendendo às propriedades da conduta, podem obter-se todos os grupos adimensionais importantes para o dimensionamento da mesma. 3. Descrição da instalação e procedimentos Material utilizado: • Água; • Bancada hidráulica; • Reservatório graduado; • Cronómetro. Procedimento experimental: Após um breve contacto com a bancada hidráulica da figura 1, procedeu-se à realização da experiência. Inicialmente, verificou-se se as tubagens se encontravam devidame nte ligadas e se as válvulas de globo estavam fechadas de modo a obter o trajecto desejado. Posteriormente, ligou-se a bomba e, progressivamente, abriu- se a válvula reguladora de modo a obter um determinado caudal. Seguidamente, ligaram-se os manómetros às respectivas tomadas de pressão, tendo o cuidado prévio de abrir as válvulas de purga de ar, situadas na parte superior do manómetro, e de fechar as válvulas de drenagem de água, situadas na parte inferior do manómetro. Para cada trajecto, obteve-se o caudal através da medição do volume debitado (com o auxílio de um reservatório graduado) e do tempo (com o auxílio de um cronómetro). Para o trajecto 1, uma conduta com 17 mm de diâmetro e 800 mm de comprimento, efectuaram-se leituras das variações de pressão para três caudais diferentes. Para o trajecto 2a, efectuaram-se leituras das variações de pressão para três caudais diferentes, sabendo que a distância entre as tomadas de pressão é de 150 mm, o diâmetro menor de 17 mm e o diâmetro maior de 28.6 mm. Campus Politécnico, 3501 Repeses – tel nr +351.232480543/7 – fax nr +351.232424651 – email demgi@mail.estv.ipv.pt 2
  • 5. Escola Superior de Tecnologia do Instituto Politécnico de Viseu DEMGi – Departamento de Engenharia Mecânica e Gestão industrial Figura 1 – Bancada hidráulica. 4. Considerações teóricas 4.1. Escoamentos interiores Nos escoamentos interiores as características hidrodinâmicas do escoamento são controladas pela fronteira exterior do escoamento que é a constituída por paredes. Daqui resulta que o escoamento se dá sobre pressão, isto é, no interior da conduta a pressão não está relacionada com pressão do exterior, porque as suas forças são compensadas pelas forças viscosas. Os escoamentos no interior de condutas podem ocorrer em regime laminar, turbulento ou num terceiro regime dito de transição. A transição do escoamento laminar para escoamento turbulento depende de um parâmetro adimensional que se denomina número de Reynolds (Re): ρ ⋅V ⋅ d Re d = (1.1) µ Para isso, basta apenas saber que a transição de laminar para turbulento verifica-se para Re transição ≈ 2300 . Posto isto, se Re presente < Retransição , então o escoamento é laminar. Se pelo contrário, Re presente > Retransição , então o escoamento é turbulento. Para a realização de um estudo de escoamentos de condutas é necessário saber-se a constituição física da conduta e, para tal, utiliza-se o coeficiente de atrito de Darcy, designado por f, que permite calcular as perdas de carga por atrito ao longo da conduta. Para tal, recorre-se à equação de Darcy-Weisbach que é válida para escoamentos interiores de qualquer secção, aplicando-se quer a escoamentos laminares quer a turbulentos: Campus Politécnico, 3501 Repeses – tel nr +351.232480543/7 – fax nr +351.232424651 – email demgi@mail.estv.ipv.pt 3
  • 6. Escola Superior de Tecnologia do Instituto Politécnico de Viseu DEMGi – Departamento de Engenharia Mecânica e Gestão industrial 2 L V hf = f ⋅ ⋅ (1.2) d 2g Uma rede para escoamento de um fluido não é apenas constituída pela tubagem, também é necessariamente constituída por válvulas, joelhos, reduções, derivações, etc. Estes acessórios produzem perdas de carga por vezes importantes que podem ser calculadas por: 2 V hl = K . (sendo K o coeficiente de perda) (1.3) 2g Uma análise de volume de controlo entre a secção de expansão e o final da zona de separação fornece uma perda teórica. Como a saída é para um tubo de tamanho finito, é chamada de expansão brusca (EB). Vem, então, que: 2  d2  h K EB = 1− 2  = 2 l (1.4)  D  V 2g 4.1.1. Escoamento em regime laminar Um exemplo comum de um escoamento em regime laminar, é o da água à saída de uma torneira: para baixos caudais observa-se um fio de água estável, com uma superfície lisa, em que as partículas do fluido se movem segundo linhas paralelas. Junto às paredes da conduta, num fluido viscoso, origina-se um gradiente de velocidades: a velocidade varia desde o valor nulo na parede até à velocidade não perturbada pelo efeito da parede. Criam-se, assim, duas zonas de escoamento, como mostra a figura 2, uma junto à parede, denominada camada limite, onde existe um gradiente de velocidades e onde se fazem sentir as tensões viscosas; outra camada, exterior, onde o perfil de velocidades é constante e onde as tensões viscosas são nulas, podendo o escoamento ser tratado como invíscido. Num escoamento laminar a troca de quantidade de movimento deve-se às tensões viscosas. Figura 2 – Representação do perfil de velocidades de um regime laminar. Campus Politécnico, 3501 Repeses – tel nr +351.232480543/7 – fax nr +351.232424651 – email demgi@mail.estv.ipv.pt 4
  • 7. Escola Superior de Tecnologia do Instituto Politécnico de Viseu DEMGi – Departamento de Engenharia Mecânica e Gestão industrial O coeficiente de atrito de Darcy em regime laminar é dado por: 64 f = (1.5) Re A rugosidade superficial afecta a resistência ao atrito. Todavia, em escoamentos laminares a perda de carga distribuída não é dependente da rugosidade da parede das condutas, na medida em que, o efeito de atrito, devido exclusivamente ao gradiente de velocidade, está distribuído por toda a secção de escoamento. 4.1.2. Escoamento em regime turbulento Este tipo de regime é caracterizado pelo movimento desordenado das partículas do fluido, ou seja, não se verifica um padrão bem definido no movimento. A troca de quantidade de movimento para um escoamento turbulento deve-se às tensões viscosas e às tensões de Reynolds. Devido a estes factores, neste escoame nto, o perfil de velocidades é mais homogéneo, como mostra a figura 3, encontrando-se o valor da velocidade média e da velocidade máxima mais próximos relativamente ao que acontece em regime laminar. Figura 3 – Representação do perfil de velocidades de um regime turbulento. O coeficiente de atrito de Darcy em regime turbulento pode ser obtido por dois processos: i) Equação de Colebrook –White: 1 ε 2,51  ≈ −2,0 log⋅  d +  (1.6) f  3,7 Re d ⋅ f    ii) Diagrama de Moody. O primeiro processo tem a grande vantagem de apresentar maior veracidade e exactidão nos resultados obtidos, tendo como único senão o facto de ser um processo mais moroso relativamente ao outro processo referido. Pelo diagrama de Moody a obtenção do valor do coeficiente de atrito de Darcy é feito de modo imediato, na medida em que, precisa-se apenas do valor do número de Reynolds e da Campus Politécnico, 3501 Repeses – tel nr +351.232480543/7 – fax nr +351.232424651 – email demgi@mail.estv.ipv.pt 5
  • 8. Escola Superior de Tecnologia do Instituto Politécnico de Viseu DEMGi – Departamento de Engenharia Mecânica e Gestão industrial rugosidade relativa do tubo. Apesar de ser um processo mais directo é, contudo, menos preciso. Os escoamentos turbulentos são bastante afectados pela rugosidade da parede das condutas, já que, o efeito do gradie nte se encontra muito próximo da parede. Após determinado ponto inicial, o atrito turbulento aumenta monotonamente com a rugosidade relativa ε d . Assim, para qualquer valor de ε d , o factor de atrito torna-se constante (totalmente rugoso) a altos números de Reynolds. 4.2. Equação de Bernoulli A equação de Bernoulli relaciona pressão, velocidade e cota. Para utilizar correctamente esta equação, devem considerar-se escoamentos em regime permanente, de atrito desprezável, incompressíveis, invíscidos e sem trans ferência de calor ou trabalho. É traduzida por: 2 2 p1 V 1 p V2 + + z1 + hB = 2 + + z2 + hT + ht (1.7) ρ g 2g ρg 2g Onde, tem-se que: ht = h f + ∑ hl Caso não existam bombas ou turbinas na situação em estudo, a equação surge simplificada: 2 2 p1 V 1 p V2 + + z1 = 2 + + z2 + ht (1.8) ρ g 2g ρ g 2g Estando o escoamento desenvolvido nas condições atrás impostas, o seu perfil de velocidade é igual em qualquer secção, ou seja, V 1 = V 2 . Pode então, recorrendo à expressão (1.3), relacionar-se a variação de pressão entre dois pontos de uma secção circular, com a perda de carga, tendo também em conta as perdas localizadas e o desnível entre esses dois pontos: ∆P ht = + ∆z (1.9) ρg 4.3. Análise dimensional de uma conduta O dimensionamento de uma conduta para o transporte de um líquido tem por base as quedas de pressão provocadas por vários factores: o diâmetro da conduta; natureza do fluido escoado Campus Politécnico, 3501 Repeses – tel nr +351.232480543/7 – fax nr +351.232424651 – email demgi@mail.estv.ipv.pt 6
  • 9. Escola Superior de Tecnologia do Instituto Politécnico de Viseu DEMGi – Departamento de Engenharia Mecânica e Gestão industrial (peso específico, viscosidade); velocidade do escoamento; características da parede (rugosidade); comprimento das condutas e quantidade de conexões e acessórios e regime de escoamento (laminar ou turbulento). Então, a perda de pressão será dada pela seguinte função: ( ∆P = F d , ρ , µ, V , ε , ∆l ) (1.10) A análise dimensional para as perdas de carga vai ser realizada pelo método dos π’s de Buckingham. Como se pode constatar, o nº de variáveis, n, neste caso são 7: d, ?, µ, V , e, ?l e ?P. Sendo o número de dimensões i=3, têm-se k grupos adimensionais ou π’s, traduzindo-se em k = n - i = 7 - 3 = 4. Através do quadro seguinte, vai obter-se uma base para a determinação dos π’s: ∆P V d ∆l ρ µ ε M L-1 T-2 L T-1 L L M L-3 M L-1 T-1 L Tabela 1 – Listagem das dimensões de cada variável. Para a escolha da base é necessário ter em conta que : nela devem constar todas as dimensões presentes; a variável a explicitar não pode pertencer à base e, para além disso, é conveniente que uma das variáveis contenha apenas uma dimensão, de forma a garantir que os elementos da base não formem um grupo adimensional. Portanto, a base escolhida, entre outras possibilidades, é ( d , V , ρ ) . Contudo, há ainda que verificar se a base escolhida não é adimensional, ou seja, que esta apresenta solução trivial: ( MLT ) 0 = ( L) a ( LT −1 ) b ( ML−3 )c 0 = c c = 0    0 = a + b − 3c ⇔ a = 0 , logo a solução é trivial.  0 = −b b = 0   Campus Politécnico, 3501 Repeses – tel nr +351.232480543/7 – fax nr +351.232424651 – email demgi@mail.estv.ipv.pt 7
  • 10. Escola Superior de Tecnologia do Instituto Politécnico de Viseu DEMGi – Departamento de Engenharia Mecânica e Gestão industrial Determinação dos π’s : b b π 1 = ∆P1 d a V ρ c π 2 = ∆l 1 d a V ρ c ( MLT ) = ( ML−1T −2 ) ( L ) ( LT −1 ) ( ML−3 ) ( MLT )0 = ( L )1 ( L) a ( LT −1 ) ( ML ) 0 1 a b c b −3 c 0 = c c = 0 0 = 1 + c c = − 1     0 = 1 + a + b − 3c ⇔  a = −1 0 = −1 + a + b − 3c ⇔  a = 0 0 = −1b b = 0 0 = −2 − 1b b = − 2     ∆P ∆l π2 = π1 = 2 d ρ ⋅V b b π 3 = µ 1d a V ρ c π 4 = ε 1d a V ρ c ( MLT ) = ( ML−1T −1 ) ( L ) ( LT −1 ) ( ML−3 ) ( MLT ) = ( L ) ( L) ( LT −1 ) ( ML−3 ) 0 1 a b c 0 1 a b c 0 = 1 + c c = − 1 0 = c c = 0      0 = − 1 + a + b − 3c ⇔  a = − 1 0 = 1 + a + b − 3c ⇔  a = −1 0 = −1 − 1b b = − 1 0 = −1b b = 0     µ ε π3 = π4 = ρ ⋅V ⋅ d d Como π 1 = F (π 2 ,π 3 , π 4 ) , inverte-se π3 , obtendo-se: 2∆P  ∆l d ⋅V ⋅ ρ ε  = F , ,  (1.11) µ 2 ρV d d Sabe-se que o comprimento e o diâmetro são constantes para uma dada região da conduta, pelo que, ∆l / d é constante, podendo passar-se para fora da função. Sabe-se ainda que, ρ ⋅V ⋅ D corresponde ao número de Reynolds: µ 2∆ P ∆l  ε = F  Re,  (1.12) ρ ⋅V 2 d  d ε Finalmente, é prático designar a função F  Re,  como factor de atrito, utilizando-se para    d o efeito a notação f. Deste modo, a fórmula final destas considerações dimensionais equivale à expressão (1.2). Campus Politécnico, 3501 Repeses – tel nr +351.232480543/7 – fax nr +351.232424651 – email demgi@mail.estv.ipv.pt 8
  • 11. Escola Superior de Tecnologia do Instituto Politécnico de Viseu DEMGi – Departamento de Engenharia Mecânica e Gestão industrial A introdução do número 2, nas equações anteriores, corresponde à inclusão de um factor de correcção de energia cinética, α , que assume o valor referido para um escoamento laminar totalmente desenvolvido. Refira-se que, para um escoamento turbulento numa conduta o valor do factor de correcção assume valores na gama de 1.4 a 1.11, sendo usualmente aproximado a 1. 5. Resultados 5.1. Trajecto 1 Características da conduta: Propriedades da água ( T = 2 0 º C ): d = 17 mm ρ = 998 kg m3 ε = 0,001 mm µ = 1, 0 × 10−3 kg ( m ⋅ s ) L = 800 mm V  m3    ∆t [s] h1 [ m] h2 [ m] 1 0,02 35 0,925 0,585 2 0,01 20 0,813 0,624 3 0,004 34 0,692 0,670 Tabela 2 – Dados registados durante o trabalho experimental. 5.1.1. Determinação da velocidade de escoamento O caudal do escoamento obtém-se a partir da equação & V V= (1.13) ∆t A velocidade calcula-se a partir do caudal e da área de secção da conduta, através da relação V& V= (1.14) A π 2 onde A = d . 4 Fazendo-se as devidas substituições, obtêm-se os valores apresentados na tabela 3. Campus Politécnico, 3501 Repeses – tel nr +351.232480543/7 – fax nr +351.232424651 – email demgi@mail.estv.ipv.pt 9
  • 12. Escola Superior de Tecnologia do Instituto Politécnico de Viseu DEMGi – Departamento de Engenharia Mecânica e Gestão industrial & V m 3 s  V [m s]   1 5,71× 10− 4 2,52 2 5,00 × 10−4 2,20 3 1,18× 10−4 0,518 Tabela 3 – Caudais e velocidades dos escoamentos. 5.1.2. Determinação da perda de carga por atrito na conduta Considerando a viscosidade dinâmica da água µ = 1, 0 × 10−3 kg ( m ⋅ s ) e a massa volúmica ρ = 998 kg m3 , calcula-se o número de Reynolds do escoamento ρVd 998 ⋅ 2,52 ⋅ 17 × 10−3 Re d = = = 42754,3 µ 1, 0 × 10−3 A rugosidade relativa para o PVC ( ε = 0,001 mm ) é ε 0,001 = = 5,88 × 10−5 d 17 Com o número de Reynolds do escoamento e a rugosidade relativa da conduta, retira-se, do diagrama de Moody, um valor para o coeficiente de atrito de Darcy: f ; 0,022 . De outra forma, pode-se determinar o coeficiente de atrito de Darcy pela equação de Colebrook-White (1.6) 1  5,88 × 10−5 2,51  ; −2,0 ⋅ log  +   3,7 42754,3 ⋅ f  f   obtendo-se um coeficiente de atrito de Darcy f ; 0,022 . A perda de carga por atrito de um escoamento calcula-se pela equação (1.2) 800 ×103 2,52 2 h f = 0,022 ⋅ ⋅ ; 0,34 m 17 × 103 2 ⋅ 9,81 Outro método para calcular a perda de carga por atrito, é através da equação (1.9), deduzida a partir da equação de Bernoulli. Considera-se ∆z = 0 , porque a conduta é horizontal, e ht = hf , uma vez que não se consideram as perdas de carga localizadas ∆P ρ ⋅ g ⋅ ( h1 − h2 ) hf = = ρ.g ρ⋅g logo, Campus Politécnico, 3501 Repeses – tel nr +351.232480543/7 – fax nr +351.232424651 – email demgi@mail.estv.ipv.pt 10
  • 13. Escola Superior de Tecnologia do Instituto Politécnico de Viseu DEMGi – Departamento de Engenharia Mecânica e Gestão industrial h f = ( h1 − h2 ) = ( 0,925 − 0,585) = 0,34 m Efectuam-se os mesmos cálculos para determinar as perdas de carga por atrito para os outros dois escoamentos. Os resultados são apresentados na tabela 4. & V m 3 s  V [m s] Red f h f [ m]   1 5,71× 10− 4 2,52 42754,3 0,0220 0,34 2 5,00 × 10−4 2,20 37325,2 0,0225 0,26 3 1,18× 10−4 0,518 8788,4 0,0320 0,022 Tabela 4 – Resultados obtidos para as perdas de carga por atrito nos escoamentos. 5.1.3. Representação gráfica 0,04 0,035 0,03 0,025 f 0,02 0,015 0,01 0,005 0 0 10000 20000 30000 40000 50000 Re d Gráfico 1 – Coeficiente de Darcy em função do número de Reynolds para três escoamentos com diferentes caudais. 0,4 0,35 0,3 0,25 h f [ m] 0,2 0,15 0,1 0,05 0 0 0,5 1 1,5 2 2,5 3 V [m s ] Gráfico 2 – Perdas de carga por atrito em função da velocidade de escoamento. Campus Politécnico, 3501 Repeses – tel nr +351.232480543/7 – fax nr +351.232424651 – email demgi@mail.estv.ipv.pt 11
  • 14. Escola Superior de Tecnologia do Instituto Politécnico de Viseu DEMGi – Departamento de Engenharia Mecânica e Gestão industrial 5.2. Trajecto 2a Características da conduta: Propriedades da água ( T = 2 0 º C ): d = 17 mm ρ = 998 kg m3 D = 28,6 mm µ = 1, 0 × 10−3 kg ( m ⋅ s ) ε = 0,001 mm L = 150 mm V  m3    ∆t [s] h1 [ m] h2 [ m] 1 0,01 19 0,805 0,774 2 0,01 25 0,750 0,738 3 0,003 39 0,717 0,716 Tabela 5 – Dados registados durante o trabalho experimental. 5.2.1. Determinação da velocidade de escoamento A partir da equação (1.13) calcula-se o caudal. Com o valor do caudal determina-se a velocidade para cada um dos diâmetros da expansão, através da equação (1.14); obtêm-se os valores apresentados na tabela 6. & V m 3 s  Vd [m s] VD [ m s ]   1 5,26 × 10− 4 2,32 0,82 2 4,00 × 10−4 1,76 0,62 3 7,69 × 10−5 0,34 0,12 Tabela 6 – Caudais e velocidades dos escoamentos. 5.2.2. Determinação das perdas localizadas na expansão 5.2.2.1. Desprezando as perdas por atrito Pela equação de Bernoulli determina-se a perda de carga total do sistema (considera- se ∆z = 0 , porque a conduta é horizontal) 2 2 p1 V 1 p V2 + + z1 = 2 + + z2 + ht ρ g 2g ρ g 2g Campus Politécnico, 3501 Repeses – tel nr +351.232480543/7 – fax nr +351.232424651 – email demgi@mail.estv.ipv.pt 12
  • 15. Escola Superior de Tecnologia do Instituto Politécnico de Viseu DEMGi – Departamento de Engenharia Mecânica e Gestão industrial Sabendo que V1 = Vd e V2 = VD , vem ρ g ( h1 − h2 ) Vd2 − VD 2 ht = + ρg 2g logo Vd2 − VD 2 ht = ( h1 − h2 ) + (1.15) 2g Fazendo-se as devidas substituições, calcula-se a perda localizada na expansão 2,322 − 0,822 ht = ( 0,805 − 0,774 ) + = 0,27 m 2 ⋅ 9,81 Como se desprezam as perdas de carga por atrito, ht = hl . Assim pela equação (1.3), vem o coeficiente de perda localizada hl 0,27 K= = = 0,98 V 2 g 2,32 2 ⋅ 9,81 2 2 Efectuam-se os mesmos cálculos para determinar as perdas de carga localizadas para os outros dois escoamentos. Os resultados são apresentados na tabela 7. & V m 3 s  Vd [m s] VD [ m s ] hl [ m] K   1 5,26 × 10− 4 2,32 0,82 0,27 0,98 2 4,00 × 10−4 1,76 0,62 0,15 0,95 3 7,69 × 10−5 0,34 0,12 0,0061 1,03 Tabela 7 – Resultados obtidos para as perdas de carga localizadas nos três escoamentos. 5.2.2.2. Considerando as perdas de carga por atrito Nesta situação, a perda de carga total do sistema vai depender, para além das perdas localizadas na expansão, das perdas de carga por atrito na conduta de menor diâmetro e na conduta de maior diâmetro. Assim ht = h fd + h fD + hl (1.16) A distância entre as tomadas de pressão é L = 150 mm . Considerando que a expansão se localiza a uma distância L 2 das tomadas de pressão, o comprimento da conduta de menor diâmetro será Ld = 75 mm e o comprimento da conduta de maior diâmetro será LD = 75 mm . Campus Politécnico, 3501 Repeses – tel nr +351.232480543/7 – fax nr +351.232424651 – email demgi@mail.estv.ipv.pt 13
  • 16. Escola Superior de Tecnologia do Instituto Politécnico de Viseu DEMGi – Departamento de Engenharia Mecânica e Gestão industrial 5.2.2.2.1. Determinação da perda de carga por atrito na conduta de menor diâmetro Considerando a viscosidade dinâmica da água µ = 1, 0 × 10−3 kg ( m ⋅ s ) e a massa volúmica ρ = 998 kg m3 , calcula-se o número de Reynolds do escoamento ρVd 998 ⋅ 2,32 ⋅17 ×10−3 Re d = = = 39361,12 µ 1, 0 ×10−3 A rugosidade relativa para o PVC ( ε = 0,001 mm ) é ε 0,001 = = 5,88 × 10−5 d 17 Determina-se o coeficiente de atrito de Darcy pela equação de Colebrook-White: 1  5,88 ×10−5 2,51  ; −2,0 ⋅ log  +   3,7 39361,12 ⋅ f  f   Obtém-se, um coeficiente de atrito de Darcy f ; 0,022 . A perda de carga por atrito de um escoamento calcula-se pela equação (1.2), sendo L = Ld = 75 mm 75 ×103 2,32 2 h fd = 0,022 ⋅ ⋅ ; 0,027 m 17 × 103 2 ⋅ 9,81 5.2.2.2.2. Determinação da perda de carga por atrito na conduta de maior diâmetro Calcula-se da mesma forma que o anterior, para D = 28,6 mm , V = VD = 0,82 m s e L = LD = 75 mm . Obtém-se uma perda de carga por atrito h f D = 0,0025 m . Assim, pela equação (1.16), determina-se a perda localizada na expansão hl = 0,27 − ( 0,027 + 0,0025 ) = 0,24 m e consequentemente, através da equação (1.3) calcula-se o coeficiente de perda localizada hl 0,24 K= = = 0,87 V 2 g 2,32 2 ⋅ 9,81 2 2 Efectuam-se os mesmos cálculos para determinar as perdas de carga localizadas para os outros dois escoamentos. Os resultados são apresentados na tabela 7. Campus Politécnico, 3501 Repeses – tel nr +351.232480543/7 – fax nr +351.232424651 – email demgi@mail.estv.ipv.pt 14
  • 17. Escola Superior de Tecnologia do Instituto Politécnico de Viseu DEMGi – Departamento de Engenharia Mecânica e Gestão industrial & V m 3 s  Vd [m s] VD [ m s ] hfd [ m] h f D [ m] hl [ m] K   1 5,26 × 10− 4 2,32 0,82 0,027 0,0025 0,24 0,87 2 4,00 × 10−4 1,76 0,62 0,017 0,0014 0,13 0,82 3 7,69 × 10−5 0,34 0,12 9,36 × 10−4 8,1× 10− 5 0,0051 0,87 Tabela 8 – Resultados obtidos para as perdas de carga localizadas nos três escoamentos. 5.2.3. Valores teóricos das perdas localizadas na expansão Os valores teóricos para as perdas localizadas numa expansão são calculados pela equação (1.4). & V m 3 s  V [m s ] hl [ m] K   1 5,26 × 10− 4 2,32 0,12 0,42 2 4,00 × 10−4 1,76 0,066 0,42 3 7,69 × 10−5 0,34 0,0025 0,42 Tabela 9 – Valores teóricos das perdas localizadas. 6. Conclusões No trajecto 1 determinaram-se as perdas de carga por atrito numa conduta, para três caudais diferentes. Verifica-se que as perdas de carga diminuem à medida que o caudal é reduzido. Comprova-se assim, que as perdas de carga por atrito, para uma conduta com comprimento, rugosidade e diâmetro constantes, dependem apenas da velocidade, e são tanto maiores quanto maior a velocidade. Verifica-se também que o coeficie nte de atrito de Darcy não varia significativamente com o número de Reynolds, uma vez que se tratam de escoamentos em regime turbulento. No trajecto 2a determinaram-se as perdas de carga localizadas na expansão. As perdas localizadas dependem, de igual forma, da velocidade. As perdas localizadas na expansão são muito superiores às perdas de carga devidas ao atrito. Por isso, os resultados obtidos, com perdas por atrito e sem perdas por atrito, não são muito diferentes. Quando se desprezam as perdas devidas ao atrito, o coeficiente de perda localizada é um pouco mais elevado, uma vez que todas as perdas na expansão são contabilizadas como sendo localizadas. Na prática os valores obtidos para as perdas localizadas são maiores que os valores teóricos, calculados a partir de uma relação entre os diâmetros das condutas. Campus Politécnico, 3501 Repeses – tel nr +351.232480543/7 – fax nr +351.232424651 – email demgi@mail.estv.ipv.pt 15
  • 18. Escola Superior de Tecnologia do Instituto Politécnico de Viseu DEMGi – Departamento de Engenharia Mecânica e Gestão industrial 7. Nomenclatura A Área, m 2 d Diâmetro menor, m D Diâmetro maior, m f Coeficiente de atrito de Darcy, adimensional g Aceleração da gravidade, m s 2 h Altura manométrica, m hB Perda de carga na bomba, m hf Perda de carga por atrito, m hl Perda de carga localizada, m ht Perda de carga total, m hT Perda de carga na turbina, m K Coeficiente de perda de carga localizada, adimensional L Comprimento, m p Pressão, Pa Re Número de Reynolds, adimensional V Volume, m 3 V& Caudal volúmico, m3 s V Velocidade, m s z Cota, m Alfabeto grego α Factor de correcção de energia cinética, adimensional ε Rugosidade, m µ Viscosidade dinâmica, kg ⋅ m −1 ⋅ s −1 ρ Massa volúmica, kg m3 8. Referências [1] White, Frank M., Mecânica dos Fluidos, 4ª Edição, McGraw-Hill, 2002; [ 2] Potter, Merle C. & Wiggert, David C., Mechanics of Fluids, Second Edition, Prentice Hall, 1997; [ 3] Shames, Irving H., Mechanics of Fluids, Third Edition, McGraw-Hill, 1992. Campus Politécnico, 3501 Repeses – tel nr +351.232480543/7 – fax nr +351.232424651 – email demgi@mail.estv.ipv.pt 16