• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Grain Markets and Large Social Transfers:An Analysis of Productive Safety Net Program in Ethiopia

Grain Markets and Large Social Transfers:An Analysis of Productive Safety Net Program in Ethiopia



International Association of Agricultural Economists Conference, Beijing, China, 16-22-August-2009

International Association of Agricultural Economists Conference, Beijing, China, 16-22-August-2009



Total Views
Views on SlideShare
Embed Views



0 Embeds 0

No embeds



Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
Post Comment
Edit your comment

    Grain Markets and Large Social Transfers:An Analysis of Productive Safety Net Program in Ethiopia Grain Markets and Large Social Transfers:An Analysis of Productive Safety Net Program in Ethiopia Document Transcript

    • Grain Markets and Large Social Transfers:  An Analysis of Productive Safety Net Program in Ethiopia            Shahidur Rashid1  International Food Policy Research Institute    Alemayehu Seyoum Taffesse  International Food Policy Research Institute  Contributed Paper prepared for presentation at the International Association of Agricultural Economists Conference, Beijing, China, August 16-22, 2009 Copyright 2009 by the authors. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.   1 E-mail addresses are: S.Rashid@cgiar.org and A.Seyoumtaffesse@cgiar.org, respectively. 1
    • Grain Markets and Large Social Transfers:   An Analysis of Productive Safety Net Program in Ethiopia      1. Introduction  It  is  almost  universally  agreed  that  providing  access  to  food  to  the  poor  through  social  transfer programs is a valid policy intervention, irrespective of economic ideology, functioning  of  markets,  or  even  the  level  of  development  of  a  given  country.  However,  there  is  a  long  standing debate as to whether these transfers should be in‐kind or in cash (Sen, 1990; Coate,  1989; Basu  1996). Four  main arguments are made in favor  of cash transfers are that they: (i)  avoid  potential  disincentive  effects  of  food  aid  on  domestic  markets,  (ii)  can  provide  more  choices  to  the  beneficiaries  and  hence  relatively  improve  their  well‐being,  (iii)  are more  cost‐ effective than food transfers, as they entail food handling costs, and  (iv) can boost consumer  market demand, which in turn can contribute towards market development (World Bank 2005).   A critical underlying assumption behind all these arguments is that the markets are integrated  and  well‐functioning  so  that  food  is  available  in  local  markets  at  moderate  prices,  an  assumption which may not hold in many developing countries. This is one of the reasons why  both emergency assistance and safety net programs continue to be food‐based. 2   However,  apart  from  situations  of  extreme  civil  conflict  or  war,  it  is  unlikely  that  market  locations in all parts of a country will be isolated from major central markets. This implies that  in most cases, it should be possible to implement a mix of food and cash based safety net or  emergency  assistance  programs.  Cash  transfer  programs  could  be  implemented  in  more  developed geographic locations, where transactions costs are low and cash injection is likely to  create demand for local products, yet not raise food prices excessively. Food transfer programs  could  be  implemented  in  more  remote  places  where  markets  are  thin  (not  integrated  with  other markets), so as to avoid possible surges in food prices in local markets from cash transfers  that  would  adversely  affect  not  only  the  households  receiving  social  transfers,  but  also  poor  non‐beneficiaries (Basu 1996). Food transfers may also be easier to implement in more remote  areas if these areas also lack implementation capacity (e.g., non‐functioning or non‐existence of  financial  institutions).  Thus,  from  operational  and  cost  effectiveness  viewpoints,  an  optimum  policy option might be to combine both cash and food.   Ethiopia’s Productive Safety Net Program (PSNP), launched in January 2005, is one example  of large scale social transfer program with a mix of cash and in‐kind transfers. Introduction of  the PSNP was a strategic move on the part of the Ethiopian government towards reducing food  aid  dependence,  boosting  domestic  production,  and  fostering  market  development.  The  country’s  food  aid  imports  did  in  fact  declined  from  861  thousand  tons  in  2004‐05  to  377  thousand tons in 2005‐06 and 447 thousand tons in 2006‐2007. Meanwhile, official estimates  2  Food aid donors’ desire to support their own domestic farmers and shippers is another major reason  for preference for transfers‐in‐kind. See Barrett and Maxwell (2005).  2
    • of production of the four major cereals (teff, wheat, maize and sorghum) showed a 40 percent  increase from 8.3 million tons in 2004‐05 to 11.7 million tons in 2006‐07.3    The PSNP spans up to 262 woredas4 that had been regular recipients of food aid between  2002 and 2004.  It operates as a safety net, targeting transfers to poor households in two ways,  through public works (PW) schemes and direct support (DS).  Public works, the larger of the two  programs, pays selected beneficiaries 6 Birr per day, raised to 8 Birr per day in December, as  payments  for  their  labor  on  labor‐intensive  projects  designed  to  build  community  assets.5   Direct  support  is  provided  to  labor‐scarce  households  including  those  whose  primary  income  earners  are  elderly  or  disabled.  This  component  thus  aims  to  maintain  the  safety  net  for  the  poorest households who cannot participate in public works.6  The  main  objective  of  this  paper  is  to  analyze  whether  PSNP  is  linked  with  this  unusual  price trend. The analysis is based on a large data set collected by the Central Statistical Agency  (CSA) of Ethiopia, which contains Peasant Association (smallest administrative unit) level data  on  prices,  production,  yields,  and  marketing  of  all  major  cereals.  Two  sets  of  analyses  are  conducted, with first set focusing on targeting characteristics and overall price trends and the  other  on  the  price  relationships  between  PSNP  and  non‐PSNP  areas  using  co‐integration  methods.         2. PSNP Transfers and Grain Market Linkages  The effects of PSNP transfers on the prices in any given woreda will depend on: 1) whether  or not the woreda’s cereal markets are integrated with the national or larger regional market;  and 2) whether the transfers are delivered in cash or in‐kind. If cereal markets are integrated  both before and after a cash or food transfer, the transfer effectively increases the supply (in  the case of a food transfer) and demand (in the case of both cash and food transfers) for the  entire  integrated  market.    In  this  case,  the  price  effect  will  generally  be  small,  although  comparing PSNP to a counterfactual of no food transfers whatsoever, PSNP actually increases  national wheat supply by about 10 percent.   In  addition  to  market  integration,  a  critical  assumption  is  whether  or  not  market  in  the  PSNP regions is large enough to influence prices in the non‐PSNP regions.7 Given almost half of  the woreda are covered by the program, which includes woreda close to PSNP, it is realistic to  assume that PSNP can influence prices in the non‐PSNP regions. Based on these assumptions,  price effects of food or cash transfers are characterized in Table 1, which forms the conceptual  basis of most of the analyses carried out in this paper.     3  However, prices of major cereals rose rapidly between 2006 and 2008, despite consecutive years of good harvest,  suggesting that production increases may have been over‐estimated.  4  Ethiopia has about 500 woredas (an administrative unit below region and zone.   5  These fall between US$0.75‐US$0.85 reflecting exchange rate differences.   6  Further details on the nature and interim impact of the PSNP can be found in Gilligan et al. (2007, 2008).   7  This is similar to standard small / large country assumptions in trade literature 3
    •   Table 1: Price effects of food versus cash transfers  Forms of  Market Integration  Effects on prices and price dynamics  Transfers  Status  Direction of Price Change   Changes in Price relatives  (Convergence /Divergence)    Markets are  Prices in both markets  No convergence or  Food  Integrated  decline proportionately   divergence.  Markets are not  Prices in A decline   Leads to convergence if  Integrated  Prices in B remain the same  transfers do not trigger  if transfers do not trigger  interregional trade  trade.    Markets are  Prices in both markets  No convergence or  Cash  Integrated  increase proportionately  divergence  Markets are not  1. Prices in A increase only  3. Divergence if transfers do  Integrated  if transfers do not trigger  not trigger trade;   trade  4. Higher price differentials if  2. Prices in both A and B  transfers trigger trade  increase Source: Authors’ compilation  The more interesting cases are for PSNP woredas that are autarkic (non‐integrated). As is  shown  in  section  3  below,  prices  in  PSNP  woredas  are  in  general  above  those  in  non‐PSNP  woredas.  A  cash  transfer  could  raise  cereal  demand  and  local  market  prices  enough  so  that  trade  from  non‐PSNP  woredas  to  a  PSNP  woreda  becomes  profitable,  thus  potentially  integrating the two markets and increasing the price differential between PSNP and non‐PSNP  woredas. Alternatively, a food transfer could lower prices in a PSNP woreda, reducing the price  differential between PSNP and non‐PSNP woredas.       5. The basic analyses of PSNP   This  section  presents  some  basic  statistical  results  on  program  characteristics  and,  to  a  limited  extent,  operational  performance  of  the  PSNP.  Specifically,  we  carry  out  some  simple  statistical tests on remoteness and agricultural developments, examine welfare implications of  cash  versus  food  transfers  since  the  launching  of  the  program,  and  provide  descriptive  and  simple statistical test results on price relationships between PSNP and non‐PSNP areas.   a. The program characteristics  The PSNP program implementation manual provides detail descriptions of the process by  which  to  determine  the  form  of  transfers  in  a  given  locality.  The  manual  states  that  “….Food  Security Task Force (FSTF) makes a request for specific types of resources (cash and/or food as  the means of transfers to households), for each kebele considered chronically food insecure, to  the  Regional  Food  Security  Steering  Committee.  The  Regional  Food  Security  Steering  Committee  will  then  reconcile  these  requests  with  resource  availability  from  the  federal  4
    • allocation and allocate resources to each woreda. After approval by the Regional Council, the  overall request for resources will be sent to the Federal level as part of the Regional Safety Net  budget plan”. The key determining factors are (i) community preferences regarding food versus  cash,  (ii)  food  availability  at  the  community  level,  (iii)  market  access,  and  (iv)  institutional  capacity of a given region.     To examine to what extent these criteria are met, we have carried out some simple mean  difference tests between non‐PSNP and PSNP areas in terms of agricultural development and  remoteness  indicators. The  results are  presented  in  Table 1,  which  presents  two sets  of  tests  results; one testing the equality of variance and the other testing the equality of mean.     b. Welfare implications for cash versus food transfers  When  a  social  program  combines  both  food  and  cash,  a  critical  challenge  is  making  sure  that  the  values  of  transfers  remain  the  same  for  both  types  of  beneficiaries.  It  becomes  particularly difficult in high inflation macroeconomic environment. When PSNP was launched,  low inflation was a hallmark of Ethiopian economy, which has dramatically changed since 2006.  The  food  component  of  the  national  consumer  price  index  has  increased  from  about  eight  percent  in  2003  to  19  percent  in  2006,  with  an  average  annual  increase  of  about  13  percent  (World Bank, 2007). Inflation continued at approximately 20 percent in 2007, but has since then  further  accelerated,  with  total  inflation  approaching  100  percent  for  calendar  year  2008.  In  spite of this high inflation rate, however, the amount of the cash transfer (ETB 6 or US$0.70)  remained the same until December 2007, causing severe erosion of benefits to the households  receiving cash transfers.  Figure  1,  constructed  with  PSNP  woreda  level  data,  illustrates  this  fact.  It  plots  wheat  equivalent  of  cash  transfers;  nominal  daily  agriculture  wage  (represented  by  the  right  axis);  wheat  equivalent  of  daily  nominal  wages;  and  food  transfers  (3kgs  of  wheat  per  day)  represented by the horizontal line.   c. The price relationships  As  the  previous  section  has  demonstrated,  the  starting  point  for  analyzing  the  linkage  between  PSNP  and  non‐PSNP  price  relationships  should  be  examining  whether  prices  in  the  PSNP  regions  are  indeed  larger  than  the  prices  in  the  non‐PSNP  regions.  Thus,  we  begin  our  analysis  by plotting  averages  of  monthly  prices  of  the  cereals  in  PSNP  and  non‐PSNP  areas  in  three areas, (data for maize are shown in Figure 2).   As shown in Table 2, prices in PSNP areas are indeed higher than prices in non‐PSNP areas.  Statistical analysis of mean differences (not shown in Table 2) indicate that mean prices in PSNP  woredas  are  statistically  significantly  higher  than  mean  prices  in  non‐PSNP  woredas.  Mean  prices in PSNP woredas with cash transfers only are statistically significantly higher than mean  prices in PSNP woredas with food transfers only.     5
    • Notice that the convergence of prices between PSNP and non‐PSNP began in the 2002‐05  period and then continued in the 2005‐08 period. The convergence from 2002 to 2005 is most  likely  attributable  to  improvement  in  road  and  communication  networks.    Indeed,  available  data show that there was a large increase in public expenditure on roads since 2000.   To  further  examine  these  trends,  we  further  examined  the  differences  between  prices  disaggregated by three sub‐periods. Tests of the mean‐differences in growth rates of prices in  PSNP  versus  non‐PSNP  woredas  showed  that  these  differences  were  statistically  significant  during the 2005‐08 period. Growth rates of prices of PSNP cash woredas were not statistically  significantly  different  from  growth  rates  of  prices  in  non‐PSNP  woredas,  however.  The  same  lack of a statistically significant difference was found in comparing growth rates for PSNP food  transfer and non‐PSNP woredas. The lack of a statistically significant difference may be due in  part to the small sample size of the cash and food transfer woredas.  6. Econometric analysis of price dynamics    a. A brief note on analytical method  The  analyses  in  the  previous  section  suggest  that  cereal  prices  between  PSNP  and  non‐ PSNP  areas  are  converging.  However,  this  convergence  can  be  driven  by  factors  other  than  launching of PSNP. To explore any possible linkage with PSNP, we carry our further tests within  Johansen’s  (1988)  and  Johansen  and  Juselius’s  (1990)  co‐integration  framework.  In  implementing  the  method,  all  preliminary  tests  on  time  series  properties  and  model  specifications  are  conducted  before  estimating  the  long  run  relationships  among  prices.  This  includes  tests  for  non‐stationarity,  lag  length  determination,  inclusion  of  deterministic  components into the cointegarion space, and misspecification tests on residuals. For the sake of  brevity,  these  results  are  not  presented  here,  but  are  available  upon  request  from  corresponding  author.    Once  unit  root  tests  confirm  that  all  prices  are  I(1),  Johansen’s  trace  tests  are  performed  to  determine  co‐integrating  relationship  between  prices  of  three  major  cereals (wheat, maize, and teff) in PSNP and non‐PSNP areas. After determining co‐integration  rank, normality and auto‐correlation tests are performed on the saved residuals.     Three specific sets of tests are conducted on co‐integrating relationships: (1) tests for price  convergence,  (2)  tests  for  Granger  causality,  and  (3)  the  analyses  of  shocks  using  generalized  impulse  response,  proposed  in  Pesaran  and  Shin  (1995).  The  intuition  behind  the  test  for  convergence follows from the very meaning of it—that is, a decline prices between PSNP and  non‐PSNP over time, suggesting non‐stationarity of Pt A − PtB .  This restriction implies that,    β′= α i ( A ) , − α B , ∗ , ∗ … … … … … … (4) where  α , and − α  are the long run coefficients of the prices in PSNP and non‐PSNP prices and  A B the  asterisks  mean  that  the  other  coefficients  are  left  unrestricted.  Following  Johansen  and  Juselius (1992), the null hypothesis can be formulated as, R ′β = 0, … … … … … … (5 )   6
    • Where R′= [1 1 0 0] .  The  hypothesis  is  tested  using  a  Likelihood  Ratio  test,  in  which  eigenvalues of the full model are compared with the eigenvalues of the restricted model.   The  Granger  causality  test  follows  the  method  proposed  by  Hall  and  Milne  ().    The  test  relies  on  imposing  zero  restrictions  on  the  loading  coefficients  to  the  long  run  cointegarion  relationship. The intuition behind the test can be illustrated by the following equation:    ⎡ΔPtA ⎤ ⎡μA ⎤ k−1 ⎡Γi,AA ⎡ A ⎤ ⎡αA ⎤ ⎡PA ⎤ Γi,AB⎤ ΔP − i ⎢ t ⎥ ⎡A B ⎤ ⎢ t − k ⎥ ⎡εAt ⎤ ⎢ B⎥ = ⎢ ⎥+ ∑ ⎢ ⎥⎢ +⎢ ⎥ β ⎥ ⎢ B⎥ ⎢ β ⎥ ⎢ B ⎥ ⎢εBt ⎥ + ……………… (6) ⎢ΔPt ⎥ ⎢μB ⎥ i=1 ⎣Γi,BA ⎣ ⎦ ⎣ ⎦ Γi,BB ⎦ ⎢ΔPB ⎥ ⎣α ⎦ ⎣ ⎦ ⎢Pt − k ⎥ ⎣ ⎦   ⎣ t − i⎦ ⎣ ⎦   Where  A and  B  represent  PSNP  and  Non‐PSNP  areas,  Γ are  2×2   matrices  of  coefficients;  Δ = (I−L) and  L  is  the  lag  operator;  k  is  lag  length;  μ   is  a  vector  of  constants,  α' s and β' s are    loading  and  long  run  coefficients,  respectively.  There  are  three  possible  cases  of  causality  testing:  ii)  αA = 0, αB ≠ 0;   ii)  αA ≠ 0, αB = 0;   and  iii)  αA ≠ 0, αB ≠ 0,   where  the  first  two  cases  imply  unidirectional  causality  and  the  third  case  suggest  feedback  between PtA and PtB .  To  see  how  causality  implications  are  drawn,  suppose  that α A = 0 .  This  implies  that  the  error  correction  term,  i.e.,  the  third  term  on  the  RHS,  is  eliminated  and  the  long  run  solution  to  P A t   will  be  unaffected by the deviations from the equilibrium path defined by the co‐integrating vector.     b. Econometric  Results    Co‐integration results are presented in Table 3. Following Johansen (1992), three different  models are considered. The first model restricts all deterministic components to a constant in  the  cointegration  relation;  the  second  model  allows  a  constant  plus  a  deterministic  trend  in  level; and the third model accounts for a constant in the cointegrating relation, a trend in level,  and a trend in cointegrating relations.  Note that for r=0 the null is clearly rejected for all three  models and for all three commodities. The first time the null hypothesis is accepted at 5% level  of significance is when r=1 under the first model for all three commodities. Thus, based upon  these  results,  we  conclude  that  the  model  that  restricts  all  deterministic  components  into  a  constant  is  the  appropriate  model;  all  pairs  of  PSNP  and  non‐PSNP  prices  are  have  unique  cointegrating vector.     Given  cointegrating  relationships,  tests  for  convergence  of  prices  are  carried  out  using  equations (4) and (5). The Likelihood Ratio Test statistics, which follows χ2(1), are calculated as  10.42 for wheat, 16.15 for maize, and 15.57 for teff. This implies that the differences between  the pairs of prices are non‐stationary. This further strengthens the earlier of price convergence  between PSNP and non‐PSNP regions.    The  long  run  Granger  causality  test  results,  presented  in  Table  4,  suggest  that  both  in  absolute numerical terms and in terms of statistical significance, the main direction of long run  causality  of  prices  flows  into  the  non‐PSNP.  So  this  result  strongly  argues  that  PSNP  prices  7
    • Granger cause the non‐PSNP prices. However, in interpreting these results one has to keep in  mind that the term 'causality' refers to some  variant on 'Granger causality', that is X Granger  causes Y if a change in X generally predates a change in Y.   In this sense, the results mean that  changes in PSNP predate changes in price in no‐PSNP.    7. Summary and policy implications  In 2005, Ethiopia implemented a major new social transfer program, the Productive Safety  Net Program (PSNP), that involved some form of work requirement in exchange for either cash  or in‐kind transfers (or a mix of the two), with the composition of the transfers administratively  set  to  be  uniform  throughout  the  administrative  region  (woreda).  In  this  paper,  we  analyze  monthly  data  on  cereal  prices  over  12  years  in  areas,  comparing  price  movements  for  areas  included  in  the  PSNP  with  those  outside  the  program.    We  find  that  prices  have  converged  between PSNP and non‐PSNP woredas over time, but that this convergence began well before  the introduction of the program.   This result suggests that the impact of cash transfers in non‐integrated PSNP (which would  tend  to  produce  divergence  of  prices  for  woredas  that  are  not  integrated  with  non‐PSNP  woredas)  is  not  the  dominant  driver  of  these  price  movements.  Rather,  the  observed  convergence  in  prices  suggests  either  that  the effect  of  in‐kind  transfers  dominates  (and  that  PSNP  and  non‐PSNP  markets  are  not  integrated)  or  that  the  convergence  is  caused  by  other  factors  (such  as  improved  road  infrastructure).  Given  that  we  also  find  that  the  markets  (on  average)  are  co‐integrated,  the  implication  is  that  on  average  the  convergence  is  caused  by  other factors (most likely, infrastructure improvements).  To arrive at more definitive conclusions will require further disaggregated analysis involving  distinguishing between the levels of transfers, the size of woreda markets and their locations.  Such analysis, provided that it can updated at regular intervals, may be able to provide valuable  inputs into operational decisions on where to use cash and where to use in‐kind transfers in the  PSNP program in rural Ethiopia.  REFERENCES  Barrett,  Christopher  B.  and  Daniel  G.  Maxell  (2005).  Food  Aid  After  Fifty  Years:  Recasting  Its  Role. Routledge: New York.  Basu, K., (1996) Relief Programs: When it May be Better to Give Food Instead of Cash, World  Development, Vol.24, No.1, pp.91‐96, 1996;  Central Statistical Agency (CSA) of Ethiopia  Coate,  Stephen.  (1989).  Cash  versus  Direct  Food  Relief,  Journal  of  Development  Economics,  .30(2), pp. 199‐224  Gilligan, D., J. Hoddinott, A. S. Taffesse, S. Dejene, N. Tefera, and Y. Yohannes. 2007.  Ethiopia  Food  Security  Programme:  Report  on  2006  Baseline  Survey.  International  Food  Policy  Research Institute, Washington, D.C. Photocopy.  8
    • Gilligan, D., J. Hoddinott, A. S. Taffesse. 2008.  “The Impact of Ethiopia’s Productive Safety Net  Programme and its Linkages,” Journal of Development Studies, forthcoming.  Hall, S. G. and Milne, A. (1994), “The Relevance of P‐Star Analysis to UK Monetary Policy,” The  Economic Journal, 104, 597‐604.  Johansen, S. (1992), “Determination of Cointegration Rank in the Presence of a Linear Trend”,  Oxford Bulletin of Economics and Statistics, 54(3), 383‐397.  _______  and  Juselius,  K.  (1990),  “Maximum  Likelihood  Estimation  and  Inference  on  Cointegration  with  applications  to  the  Demand  for  Money”,  Oxford  Bulletin  of  Economics and Statistics, 52(2), 169‐210.  _______ and Juselius, K. (1992), “Testing Structural Hypotheses in a Multivariate Cointegration  Analysis of the PPP and the UIP for UK”, Journal of Econometrics, 53, 211‐244.  9
    • Figure 1: Rural Agricultural Wages and Real Value of Cash Transfers, Jan 2005 to Feb 2008 Figure 2: Comparison of Maize Price Trends in PSNP and non-PSNP Prices, Sep 1996 to Feb 2008 10
    • Table 1: Agricultural Development and Remoteness Indicators between PSNP and non-PSNP   Test for Equality of  Mean  Tests of Equality of  Variances  difference  Means**  Ag development and  between non‐ remoteness Indicators*  Test Stats  P‐Values  PSNP and PSNP  Test Stats  P‐Values    (F‐Value)       (t‐Values)     Per capita cereal production  7.511  0.007  15.26  2.84  0.005  Yield per hectare  12.309  0.001  37.66  2.31  0.022  Travel time of Addis Ababa  3.444  0.065  ‐4.51  ‐4.07  0.00  Cereal sales as % of production  0.743  0.39  2.75  2.86  0.005  Travel times to the nearest  town of 20,000 people  1.38  0.242  ‐0.77  ‐1.127  0.261  *Cereal production and marketing data are from CSA; and remoteness measures are from Chamberlin et  al. 2006.  Table 2: Comparison PNSP non-PSNP differences in price and price growth % difference between PSNP and Non-PSNP Commodities/Period prices growth rates Mean price Price Growth Pre-period I (1996-2001) Wheat white 8.66 -10.28 Maize 24.48 9.38 Teff white 14.19 90.38 Barely 15.13 133.54 Pre-PSNP period II (2002-2005) Wheat white 4.49 -56.61 Maize 8.22 -3.59 Teff white 3.79 -10.17 Barely 5.46 -15.10 Post-PSNP period (2005-2008) Wheat white 3.14 -12.98 Maize 7.25 -4.78 Teff white 2.68 -10.10 Barely 1.65 13.40 11
    • Table 3: Johansen’s Cointegration Rank Test and Model Selection for PSNP and Non-PSNP Price Relationships Null Model 2 Model 3 Model 4 Commodities Hypotheses Trace 95 % Trace 95 % Trace 95 % Test Critical Test Critical Test Critical Value Value Value r=0 23.94 19.96 25.78 15.41 31.12 25.32 Maize r≤1 2.04 9.25 2.04 3.76 2.19 12.25 r=0 31.35 19.96 31.29 15.41 35.62 25.32 Wheat r≤1 6.04 9.24 5.99 3.76 6.47 12.25 r=0 23.3 19.96 22.91 15.41 42 25.32 Teff r≤1 5.62 9.24 5.26 3.76 9.34 12.25 12
    • Table 4: Long Run Granger Causality Test Results Granger Causality* Commodity Prices Estimated Loading H0: αi = 0 2 weights (αi) Statistics χ (1) P-value Maize Prices in PSNP areas (lmsn) -0.022 0.090 0.770 Prices in Non-PSNP areas (lmnsn) 0.194 3.900 0.050 Wheat Prices in PSNP areas (lwsn) -0.050 0.120 0.730 Prices in Non-PSNP areas (lwnsn) 0.389 9.210 0.000 Teff Prices in PSNP areas (ltsn) 0.210 3.761 0.050 Prices in Non-PSNP areas (ltnsn) -0.101 0.530 0.470   13