Biomedicina Plano de Aula 3

  • 1,014 views
Uploaded on

 

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
1,014
On Slideshare
0
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
20
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Farmacologia Aula 3: Antidepressivos e estabilizadores do humor Professor: Caio Maximino Ementa: Depressão: Nosologia, diagnóstico e epidemiologia; Depressão: Patofisiologia; Alostasia e estresse; A teoria monoaminérgica da depressão; Neurofarmacologia da 5-HT; Corticoesteróides e depressão; Neurogênese e depressão; Marcadores bioquímicos da depressão: 5-H1AA, MHPG e CRH; Neuroimagem da depressão; Genética comportamental da depressão; Knock-out de receptores em modelos animais de depressão; Fármacos utilizados no tratamento da depressão: iMAOs, Tricíclicos, SSRIs, NaSSAs e NARIs; Eficácia dos antidepressivos; Outros tratamentos; Farmacocinética e farmacodinâmica dos antidepressivos; Farmacogenômica da depressão: Polimorfismos no gene 5-HTT e HTR1A; Tensão pré- menstrual e depressão perimenopausal; Transtorno bipolar: Nosologia, diagnóstico e epidemiologia; Transtorno bipolar: Patofisiologia; Genética comportamental do transtorno bipolar; Objetivos: Ao final da aula, os alunos devem ser capazes de 1) Definir o campo da farmacologia e os conceitos de droga, receptor e ligante, e interações entre esses construtos; 2) Conhecer e entender os aspectos qualitativos e quantitativos da interação ligante-receptor, em termos de agonistas e antagonistas; e 3) Conhecer e entender as bases fisiológicas da ação das drogas, especialmente no tocante a proteínas receptoras. Tarefa atribuída (Peso 0,6): Explicar, mecanisticamente, um mecanismo molecular de transdução de sinal (receptores ligados a canais, receptores acoplados à proteína G, receptores ligados à tirosina quinase e à guanilato ciclase, receptores nucleares). Formato: Esquema + legenda explicativa. Prazo de entrega: 14 de Abril. • Introdução 15 Exposição Apresentação da disciplina: ementa, métodos de avaliação, combinados práticos. min. dialogada • Desenvolvimento 75 Exposição Conceitos centrais: droga, receptor, afinidade e eficácia, interação ligante/receptor.
  • 2. • min. dialogada Alvos para a ação das drogas: Proteínas receptoras, canais iônicos, enzimas, moléculas transportadoras. • Farmacocinética I: Liberação e absorção • Conclusão 10 Exposição Fechamento: Atribuição de tarefa min. dialogada Bibliografia: Akiskal HS, McKinney WT (1973). Depressure disorders: Toward a unified hypothesis. Science 182: 20-29. Amat J et al. (2005). Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus. Nature Neuroscience 8: 365-371. Arias B et al. (2005). Evidence for a combined genetic effect of the 5-HT1A receptor and serotonin transporter genes in the clinical outcome of major depressive patients treated with citalopram. Journal of Psychopharmacology 19: 166-172. Benedetti F et al. (1999). Influence of a functional polymorphism within the promoter of the serotonin transporter gene on the effects of total sleep deprivation in bipolar disorder. American Journal of Psychiatry 156: 1450-152. Bessa JM et al. (2008). The mood-improving actions of antidepressants do not depend on neurogenesis but are associated with neuronal remodeling. Molecular Psychiatry El Yacoubi M et al. (2001). Adenosine A2A receptor antagonists are potential antidepressants: Evidence base don pharmacology and A2A receptor knock-out mice. British Journal of Pharmacology 134: 68-77. Green AR (2006). Neuropharmacology of 5-hydroxytryptamine. British Journal of Pharmacology 147: S145-S152. Guscott M et al. (2004). Genetic knockout and pharmacological blockade studies of the 5-HT7 receptor suggest therapeutic potential in depression. Neuropharmacology 48: 492-502.
  • 3. Haller J (2002). Behavioral responses to social stress in noradrenaline transporter knockout mice: Effects on social behavior and depression. Brain Research Bulletin 58: 279-284. Hayley S et al. (2005). Pathogenesis of clinical depression: Stressor- and cytokine-induced alterations of neuroplasticity. Neuroscience 135: 659-678. Heisler LK et al. (1998). Elevated anxiety and antidepressant-like responses in serotonin 5-HT1A receptor mutant mice. Proceedings of the National Academy of Sciences USA 95: 15049-15054. Holmes A et al. (2003). Abnormal behavioral phenotypes of serotonin transporter knockout mice: Parallels with human anxiety and depression. Biological Psychiatry 54: 953-959. Jang KL (2005). The mood disorders. In: The Behavioral Genetics of Psychopathology: A Clinical Guide, pp. 67-86. Kaplan M (2004). Psychoanalysis and psychopharmacology: Art and science of combining paradigms. In: Panksepp J (ed.), Textbook of Biological Psychiatry, pp. 549-570. Hoboken: Wiley-Liss, Inc. Kendler KS et al. (2003). The structure of genetic and environmental risk factors for common psychiatric and substance use disorders in men and women. Archives of General Psychiatry 60: 929-937. Kim DK et al. (2000). Serotonin transporter gene polymorphism and antidepressant response. NeuroReport 11: 215-219. Korte SM et al. (2005). The Darwinian concept of stress: Benefits of allostasis and costs of allostatic load and the trade-offs in health and disease. Neuroscience and Biobehavioral Reviews 29: 3-38. MacQueen GM et al. (2001). Performance of heterozygous brain-derived neurotrophic factor knockout mice on behavioral analogues of anxiety, nociception, and depression. Behavioral Neuroscience 115: 1145-1153. Mayberg HS (2004). Depression: A neuropsychiatric perspective. In: Panksepp J (ed.), Textbook of Biological Psychiatry, pp.197-230. Hoboken: Wiley-Liss, Inc.
  • 4. Mayberg HS et al. (2005). Deep brain stimulation for treatment-resistant depression. Neuron 45: 651-660. McEwen BS (2000). Allostasis and allostatic load: Implications for neuropsychopharmacology. Neuropsychopharmacology 22: 108-124. Meyer JH et al. (1999). Prefrontal cortex 5-HT2 receptors in depression: An [18F]setoperone PET imaging study. American Journal of Psychiatry 156: 1029-1034. Ridder S et al. (2005). Mice with genetically altered glucocorticoid receptor expression show altered sensitivity for stress-induced depressive reactions. Journal of Neuroscience 25: 6243-6250. Rief W et al. (No prelo). Meta-analysis of the placebo response in antidepressant trials. Journal of Affective Disorders. Runinow DR, Schmidt PJ, Roca CA (1998). Estrogen-serotonin interactions: Implications for affective regulation. Biological Psychiatry 44: 839-850. Sánchez C, Meier E (1997). Behavioral profiles of SSRIs in animal models of depression, anxiety and aggression: Are they all alike? Psychopharmacology 129: 197-205. Shaldubina A et al. (2001). The mechanism of lithium action: State of the art, ten years later. Progress in Neuro-Psychopharmacology and Biological Psychiatry 25: 855-866. Smeraldi E et al. (1998). Polymorphism within the promoter of the serotonin transporter gene and antidepressant efficacy of fluvoxamine. Molecular Psychiatry 3: 508-511. Yadid G et al. (2000). Elucidation of the neurobiology of depression: Insights from a novel genetic animal model. Progress in Neurobiology 62: 353-378.
  • 5. Este trabalho está licenciado sob uma Licença Creative Commons Atribuição-Uso Não-Comercial-Compartilhamento pela mesma Licença 2.5 Brasil. Para ver uma cópia desta licença, visite http://creativecommons.org/licenses/by-nc-sa/2.5/br/ ou envie uma carta para Creative Commons, 171 Second Street, Suite 300, San Francisco, California 94105, USA.