Your SlideShare is downloading. ×
Science Project
Upcoming SlideShare
Loading in...5

Thanks for flagging this SlideShare!

Oops! An error has occurred.

Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Science Project


Published on

Published in: Technology, Business
  • Be the first to comment

  • Be the first to like this

No Downloads
Total Views
On Slideshare
From Embeds
Number of Embeds
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

No notes for slide
  • Good morning. Ladies and Gentlemen. My name is … and … . We come form mahidol Wittayanusorn school Thailand. Today we would like to present our project. The title is Efficiency of nematode ( Steinernema carpocapsae ) and symbiosis bacterium Xenorhabdus nematophila from the entomopathogenic nematode for eliminating termite Coptotermes curvignathus in Para Rubber. Now we would like all of you to know about the background and introduction of our work.
  • Transcript

    • 1. Efficiency of Nematode ( Steinernema carpocapsae ) and Symbiosis Bacterium Xenorhabdus nematophila from the Entomopathogenic Nematode for Eliminating Termite Coptotermes curvignathus in Para Rubber Chakraphan Hiranwrongwera Patcharapon Adisettakul Supathep Tansirichaiya Project
    • 2. Thailand Agricultural country Introduction Para rubber
    • 3. Problem from termite Chemical control Biological control Para Rubber Coptotermes curvignathus Introduction
    • 4. Introduction Damage from Coptotermes curvignathus to Para rubbers’ root
    • 5. Biological control Virus Bacteria Fungi Nematode Temporary Permanent Introduction
    • 6. For the life cycle of nematode , there is only one stage to eliminate the insects: Infective Juvenile (IJ). The most efficiency of eliminating insects is Steinernema carpocapsae. Introduction
    • 7. There is, in nematode intestine, symbiosis bacteria Xenorhabdus nematophila . This bacteria produces some substances that can eliminate insects. Introduction
    • 8. Developing methods to eliminate Coptotermes curvignathus by using nematode Introduction
    • 9. To study efficiency of nematode and bacteria from the entomopathogenic nematode to eliminate termite in para rubber Objective Para rubber
    • 10. Methods Research the information Preparation Inject suspension on termite
    • 11. Preparation Termite Coptotermes curvignathus Nematode Steinernema carpocapsae Bacteria Xenorhabdus nematophila Suspension of nematode and bacteria Methods
    • 12. Survey the rubber plantation to find the termites Coptotermes curvignathus Collect the sample of termites Feed the termites to adapt themselves Divide 30 termites to each plate Preparation of termite Coptotermes curvignathus Methods
    • 13. Spray the nematodes to infect maggots Wait until the nematodes separate from maggots Keep in the sponges at 5 c Methods Preparation of nematode Steinernema carpocapsae
    • 14. Adjust the concentrate Count the number of the nematodes Squeeze the sponges which have the nematode inside in 0.4% formaldehyde Preparation of nematode Steinernema carpocapsae Methods
    • 15. Culture the bacteria in NBTA by using liquid from maggots After 24 hours move bacteria into YS-broth Wait until the maggots die Spray the nematodes Steinernema carpocapsae to infect maggots Shake for 24 hours Preparation of bacteria Xenorhabdus Nematophila Methods
    • 16. Centrifuge bacteria in the Appendrop Remove a half of media mix it by vortex Put nematodes into Appendrop Mix it Preparation of suspension of nematode and bacteria Methods
    • 17. Experiment Treatment 1, water Treatment 2, YS-broth Treatment 3, formaldehyde Treatment 5, nematode Steinernema carpocapsae Treatment 4, bacteria Xenorhabdus Nematophila Treatment 6, suspension of nematode and bacteria Methods
    • 18. Prepare Water YS-broth Formaldehyde Nematode Bacteria Nematode and bacteria Experiment Methods Control groups Experimental groups
    • 19. Pipettes Water YS-broth Formaldehyde Nematode Bacteria Nematode and bacteria - ---- Termite Coptotermes curvignathus ---- - Experiment Methods
    • 20. After 24 hours Observed and recorded Experiment Methods
    • 21. Result
    • 22. Mortality of termite
    • 23. Conclusion The nematode has the most efficiency in eradicating termites in para rubber
    • 24. Andrew, H.H. Wong and J. Kenneth Grace. (2004). Laboratory Evaluation of the Formosan Subterranean Termite Resistance of Borate-treated Rubberwood Chipboard. University Malaysia Sarawak Faculty of Resource Science and Technology, Malaysia Blackburn, M., E. Golubeva, D. Bowen, and R. H. ffrench-Constant. (1998). A novel insecticidal toxin from Photorhabdus luminescens , Toxin complex a (Tca), and its histopathological effects on the midgut of Manduca sexta . Applied and Environmental Microbiology . 64:3036-3041. Daborn, P. J., N. Waterfield, C. P. Silva, C. P. Y. Au, S. Sharma, and R. H. ffrench-Constant. ( 2002). A single Photorhabdus gene, makes caterpillars floppy ( mcf ), allows Escherichia coli to persist within and kill insects. Proceedings of the National Academy of Sciences . 99:10742-10747. Hayat B. , Abdus S. K., Abid F. , Alam Z. and Amanullah K. (2005). Toxic effects of palpoluck Polygonum hydropepper L. and Bhang Cannabis sativa L. plants extracts against termites Heterotermes indicola (Wasmann) and Coptotermes heimi (Wasmann) (Isoptera:Rhinotermitidae). Songklanakarin J. Sci. Technol. , 27(4): 705-710 References
    • 25.
      • Finally, this project is accredited to the supports and assistances from
        • The Thailand Research Fund
        • Plant Protection Research and Development Office , Department of A griculture ,Thailand
        • Mahidol Wittayanusorn School, Thailand
    • 26. for your attention Thanks