• Like
Class Viii Sylabus  & Marks Distribution   2010 Xp
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

Class Viii Sylabus & Marks Distribution 2010 Xp

  • 860 views
Published

 

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
860
On SlideShare
0
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
5
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. gva¨wgK I D”P gva¨wgK wk¶v †evW©, XvKv| KZ©„K cÖYxZ †R Gm wm cix¶v - 2010 welqwfwËK cÖ‡kœi aviv I gvbe›Ub (mviv‡`‡ki 8wU wk¶v †ev‡W©i Rb¨ cÖ‡hvR¨) †gvU b¤^i 900 †R Gm wm cix¶v - 2010 (welqwfwËK cÖ‡kœi aviv I gvbe›Ub)  c„ôv - 1
  • 2. 09/03/2010 ZvwiL wk¶v gš¿Yvj‡q AbywôZ Aóg †kªYxi mgvcbx cix¶v - 2010 MÖnY msµvš— mfvi wm×vš— †gvZv‡eK mviv‡`‡k Aóg †kªYxi mgvcbx cix¶v Awfbœ cÖkœc‡Î AbywôZ n‡e| cix¶vi bvg n‡e Junior School Certificate (JSC)| D³ cix¶vq cÖ‡Z¨K wel‡q 100 b¤^i K‡i 9wU wel‡q †gvU 900 b¤^‡ii cix¶v MÖn‡Yi wm×vš— n‡q‡Q| †m Av‡jv‡K cÖwZwU wel‡qi gvbe›Ub I b¤^i web¨vm wbgœi~cfv‡e cÖYqb Kiv n‡jv| µwgK wel‡qi bvg c~Y©gvb 1 evsjv 1g cÎ (100) 200 2 evsjv 2q cÎ (100) 3 English First paper (100) 200 4 English Second paper (100) 5 mvaviY MwYZ 100 6 mvaviY weÁvb 100 7 mvgvwRK weÁvb 100 8 ag© wk¶v 100 (Bmjvgag©/wn›`yag©/†eŠ×ag©/wLª÷ ag©) 9 K…wl wk¶v/ Mvn©¯’¨ A_©bxwZ 100 †gvU 900 †R Gm wm cix¶v - 2010 (welqwfwËK cÖ‡kœi aviv I gvbe›Ub)  c„ôv - 2
  • 3. 1| †R Gm wm cix¶v G eQi †_‡K ïi“ n‡e weavq mswkó wk¶v †ev‡W©i AvIZvaxb we`¨vjq n‡Z Aóg †kªYx‡Z wk¶vµg mgvwßi ci †ev‡W©i †iwR‡÷kb cÖvß QvÎ/QvÎxiv Rywbqi ¯‹zj mvwU©wd‡KU cix¶vq wbR wbR we`¨vjq n‡Z Ask MªnY Kivi †hvM¨ e‡j we‡ewPZ n‡e| 2| Avš—:‡ev‡W©i e`wjK…Z QvÎ/QvÎx‡`i †¶‡Î mswkó †ev‡W©i †iwR‡÷ªkb cªvwßi ci cix¶vq AskMÖn‡Yi †hvM¨ e‡j we‡ewPZ n‡e| 3| gymjgvb wk¶v_x©‡`i Rb¨ Bmjvg wk¶v Ges wn›`y, †eŠ× I wLªóvb ag©vej¤^x wk¶v_x©‡`i Rb¨ Zv‡`i wbR wbR ag© wk¶v eva¨Zvg~jK| †Kvb we`¨vj‡q GK/GKvwaK a‡g©i wk¶K bv _vK‡j Ab¨ wel‡qi wk¶K Zv cov‡eb| 4| K…wl wk¶v †Q‡j‡`i Rb¨ Avewk¨K welq Ges †g‡q‡`i Rb¨ Db¥y³ _vK‡e| †h mKj †g‡q K…wl wk¶v co‡Z PvB‡e bv Zviv weKí wn‡m‡e Mvn©¯’¨ A_©bxwZ co‡e| 5| Rywbqi ¯‹zj mvwU©wd‡KU cix¶vq ‡Kvb e¨envwiK cix¶v _vK‡e bv| 6| eqmmxgv : QvÎ/QvÎxi eqm 11 eQi c~Y© bv nIqv ch©š— †Kvb Aóg †kªYx‡Z fwZ© n‡Z cvi‡e bv Ges 17 eQ‡ii †ewk eq‡mi QvÎ/QvÎx Aóg †kªYx‡Z Aa¨qb Ki‡Z cvi‡e bv| 7| evsjv I Bs‡iwR wel‡q Dfqc‡Î byb¨Zg cvm b¤^i 66 Ges Ab¨vb¨ wel‡q byb¨Zg cvm b¤^i 33| 8| cix¶vq DËx‡Y© †Kvb wefvM D‡jL _vK‡e bv| ïay cÖwZ wel‡q cªvß †jUvi †MÖW Ges mKj wel‡q cÖvß Grade Point (GP) Gi wfwˇZ cix¶v_x©i Grade Point Average (GPA ) D‡jL _vK‡e| 9| cix¶vi dj cÖKv‡ki †¶‡Î DËxY© cix¶v_x©i †ivj b¤^‡ii cv‡k GPA Ges evwK cix¶v_x©i †ivj b¤^‡ii cv‡k eÜbx‡Z Ô F Õ †jLv _vK‡e| †Uey‡jkb eB‡Z mKj cix¶v_x©i we¯—vwiZ Z_¨ D‡jL _vK‡e| †R Gm wm cix¶v - 2010 (welqwfwËK cÖ‡kœi aviv I gvbe›Ub)  c„ôv - 3
  • 4. 10| b¤^i c‡Îi cwie‡Z© g~j¨vqb cÎ (Academic Transcript ) Bmy¨ Kiv n‡e| G‡Z cÖ‡Z¨K wel‡q cÖvß †MÖW, GP I GPA D‡jL _vK‡e Ges cÖwZ †MÖ‡Wi Rb¨ wba©vwiZ e¨vwß D‡jL _vK‡e| 11| wk¶v †evW© †_‡K g~j mb`cÎ Bmy¨ we`¨gvb _vK‡e| wefv‡Mi ¯’‡j GPA D‡jL _vK‡e| 12| †R. Gm. wm. cix¶vq GKRb cix¶v_x©i cÖvß b¤^i (Raw Score) †K †jUvi †MÖ‡W i~cvš —‡ii c×wZ wbgœi~c n‡e : cÖvß b¤^‡ii †kªYx †MÖW †jUvi †MÖW e¨vwß c‡q›U A+ 80-100 5.00 A 70-79 4.00 A- 60-69 3.50 B 50-59 3.00 C 40-49 2.00 D 33-39 1.00 F 00-32 0.00 13| cix¶vi gva¨g : †`‡ki Af¨š—‡i I we‡`‡k Aew¯’Z †ev‡W©i Aby‡gvw`Z wk¶v cÖwZôv‡b cvV`vbiZ evsjv‡`wk †h †Kv‡bv QvÎ/QvÎx B”Qv Ki‡j evsjv ev Bs‡iwR †h †Kv‡bv GKwU fvlvq Rywbqi ¯‹zj mvwU©wd‡KU cix¶v w`‡Z cvi‡e| 14| QvÎ/QvÎxiv eûwbe©vPbx I iPbvg~jK cÖ‡kœi DËi GKB LvZvq †`‡e| cª‡dmi dvwngv LvZzb †Pqvig¨vb gva¨wgK I D”P gva¨wgK wk¶v †evW©, XvKv †R Gm wm cix¶v - 2010 (welqwfwËK cÖ‡kœi aviv I gvbe›Ub)  c„ôv - 4
  • 5. †R Gm wm cix¶v - 2010 evsjv 1g cÎ cÖ‡kœi aviv I gvbe›Ub mgq : 3 N›Uv c~Y©gvb : 100  m„Rbkxj (iPbvg~jK) As‡k 6 wU cÖkœ 10 X 6 = 60 b¤^i  eûwbe©vPbx As‡k 40 wU cÖkœ 1 X 40 = 40 b¤^i †gvU = 100 b¤^i [we.`ª. - eûwbe©vPbx cÖkœ PviwU `¶Zv ¯—‡ii Av‡jv‡K Ges cÖ¯—vweZ nvi (%) Abyhvqx (80% - 20%) cwigvwR©Z aviv †hgb - mvaviY eûwbe©vPbx (Simple M.C.Q.) cÖkœ, eûc`xmgvwßm~PK (Multiple Completion) Ges Awfbœ Z_¨wfwËK (Situation Set) cÖkœ eRvq †i‡L cÖYxZ n‡e|]  m„Rbkxj cÖkœ gvb = 60 b¤^i 1|M`¨vsk †_‡K 05wU (DÏxcKmn) cÖkœ _vK‡e, 3 wUi DËi w`‡Z n‡e = 10 X 3 = 30 b¤^i 2|c`¨vsk †_‡K 04wU (DÏxcKmn) cÖkœ _vK‡e, 3 wUi DËi w`‡Z n‡e = 10 X 3 = 30 b¤^i †gvU 08wU cÖ‡kœi 06 wU DËi w`‡Z n‡e = 60 b¤^i  eûwbe©vPbx Ask = 40 b¤^i 1|M`¨vsk †_‡K 20 wU eûwbe©vPbx cÖkœ _vK‡e = 1 X 20 = 20 b¤^i †R Gm wm cix¶v - 2010 (welqwfwËK cÖ‡kœi aviv I gvbe›Ub)  c„ôv - 5
  • 6. 2|c`¨vsk †_‡K 20 wU eûwbe©vPbx cÖkœ _vK‡e = 1 X 20 = 20 b¤^i †gvU 40 wU cÖ‡kœi 40 wU DËi w`‡Z n‡e = 40 b¤^i NCTB KZ©„K cÖKvwkZ 8g †kªYxi cvV¨eB †_‡K cÖkœcÎ cÖYxZ n‡e| †R Gm wm cix¶v - 2010 (welqwfwËK cÖ‡kœi aviv I gvbe›Ub)  c„ôv - 6
  • 7. †R Gm wm cix¶v - 2010 evsjv 2q cÎ cÖ‡kœi aviv I gvbe›Ub mgq : 3 N›Uv c~Y©gvb : 100  iPbvg~jK As‡k 5 wU cÖkœ 10 X 5 = 50 b¤^i  eûwbe©vPbx As‡k 50 wU cÖkœ 1 X 50 = 50 b¤^i †gvU = 100 b¤^i  iPbvg~jK cÖkœ gvb = 50 b¤^i 1|Abyev` : 2wU cÖkœ _vK‡e 1wUi DËi w`‡Z n‡e = 05 X 1 = 05 b¤^i 2|wPwVcÎ/Av‡e`bcÎ : 2wU cÖkœ _vK‡e 1wUi DËi w`‡Z n‡e = 10 X 1 = 10 b¤^i 3|mvivsk/mvigg© : 2wU cÖkœ _vK‡e 1wUi DËi w`‡Z n‡e = 10 X 1 = 10 b¤^i 4|fve-m¤cÖmviY : 2wU cÖkœ _vK‡e 1wUi DËi w`‡Z n‡e = 10 X 1 = 10 b¤^i 5|iPbv : 5wU cÖkœ _vK‡e 1wUi DËi w`‡Z n‡e = 15 X 1 = 15 b¤^i †gvU = 50 b¤^i  eûwbe©vPbx Ask = 50 b¤^i 1|e¨vKiY = 1 X 30 = 30 b¤^i (fvlv I e¨vKiY, aŸwb I eY©, mwÜ, kã cwiPq, c`,ePb, wj½, cyi“l, KviK I wefw³, AbymM©, DcmM©, wµqvg~j, Kvj, mgvm, evK¨ I ev‡K¨i cÖKvi‡f`, ¯^ifw½, weivg wPý|)
  • 8. 2|Abyev` 5wU =1X5 = 05 b¤^i 3|wPwV/cÎ 5wU = 1 X 5 = 05 b¤^i 4|weiPb 10wU = 1 X 10 = 10 b¤^i †gvU = 50 b¤^i NCTB KZ©„K Aby‡gvw`Z 8g †kªYxi cvV¨eB †_‡K cÖkœcÎ cÖYxZ n‡e|
  • 9. J S C Exam - 2010 Subject : English First paper Distribution of Marks Time : 3 Hours Full Marks : 100 Part – A (Seen Comprehension) Marks : 40 Types of Items (Any eight items will be set, each item will bear 5 marks) a True/False ) b M.C.Q. ) c Fill in the gaps with clues ) d Open Ended Questions ) e Word meaning (Putting the given words next to their meanings) ) f Fill in the gaps without clues ) g Information Transfer/Writing paragraph based on given passage ) h Summarizing ) i) Dialogue writing based on the given passage Part - B (Vocabulary and Grammar) Marks : 20 a Cloze Test with clues (From the Text) 1 X 10 = 10 ) b Cloze Test without clues (From the Text) 1 X 10 = 10 ) Part - C (Writing Test) Marks : 40 a Making sentences from substitution table (From the Text) 1 X 10 = 10 ) b Re-arranging sentences according to sequence in a passage form (From the Text) 1 X 10 = 10 ) c Writing an informal letter (Guided) 1 out of 2 10 ) d Paragraph (Based on Text Book) 1 out of 2 10 ) NCTB KZ©„K cÖKvwkZ 8g †kªYxi cvV¨eB †_‡K cÖkœcÎ cÖYxZ n‡e|
  • 10. J S C Exam - 2010 Subject : English Second paper Distribution of Marks Time : 3 Hours Full Marks : 100 Part – A Grammar Items : 5 X 12 = 60 1 Uses of Articles where necessary (Filling in the gaps in a passage) . 2 Tenses (Re-writing a given passage in the present/past/future tense) . 3 Voice (Active to passive & vice-versa) . 4 Transformation of sentences (Questions must be set from the following areas) . a) Statements to Questions & vice-versa b) Statements to commands requests & vice-versa c) Statements to Exclamations & vice-versa d) Affirmative to Negative & vice-versa e) Changing degrees of Adjectives 5 Uses of simple prepositions (Class standard) (Filling in the gaps with clues) . 6 Uses of Conjunctions (Filling in the gaps in detached sentences with clues) . 7 Right forms of Verbs (Filling in the gaps in detached sentences with clues) . 8 Uses of simple Pronouns (Filling in the gaps in detached sentences with clues) . 9 Uses of simple Adjectives (Filling in the gaps in detached sentences with clues) . 1 0 Uses of simple Adverbs (Filling in the gaps in detached sentences with clues) . 1 1 Uses of simple Idioms and Phrases (Filling in the gaps in detached sentences with clues) . 1 2 Narration (Assertive, Interrogative & Imperative) (Class standard) . 1 3 Uses of 1st and 2nd conditions (Completing sentences) . N.B. 12 Items will be set in the examination. There will be no alternative. Part – B
  • 11. Composition – Marks : 40 1 Writing a formal letter (Guided) 1 out of 2 05 . 2 Story Writing 05 . 3 Dialogue (Guided) 05 . 4 Paragraph 1 out of 3 10 . 5 Composition 1 out of 4 15 . NCTB KZ©„K Aby‡gvw`Z 8g †kªYxi cvV¨eB †_‡K cÖkœcÎ cÖYxZ n‡e|
  • 12. †R Gm wm cix¶v - 2010 mvaviY MwYZ cÖ‡kœi aviv I gvbe›Ub mgq : 3 N›Uv c~Y©gvb : 100  cvwUMwYZ = 36 b¤^i 1| g~j` I Ag~j` msL¨v †_‡K 2 wU cÖkœ _vK‡e, 1 wUi DËi w`‡Z n‡e| 6X1=6 2| kZKiv wnmve, my`Klv I jvf¶wZ †_‡K 5 wU cÖkœ _vK‡e, 3 wUi DËi w`‡Z n‡e| 6 X 3 = 18 3| cwigvc †_‡K 2 wU cÖkœ _vK‡e, 1 wUi DËi w`‡Z n‡e| 6X1=6 4| cwimsL¨vb †_‡K 2 wU cÖkœ _vK‡e, 1 wUi DËi w`‡Z n‡e| 6X1=6  exRMwYZ = 36 b¤^i 1| m~Îvejx I cÖ‡qvM †_‡K 3 wU cÖkœ _vK‡e, 2 wUi DËi w`‡Z n‡e| 3X2=6 2| Drcv`‡K we‡klY †_‡K 3 wU cÖkœ _vK‡e, 2 wUi DËi w`‡Z n‡e| 3X2=6 3| exRMwYZxq fMœvsk j.mv.¸. I M. mv. ¸ †_‡K 3 wU cÖkœ _vK‡e, 2 wUi DËi w`‡Z n‡e| 3X2=6 4| mij mgxKiY (GK PjK/wØ PjK) 2 wU cÖkœ _vK‡e, 1 wUi DËi w`‡Z n‡e| 6X1=6
  • 13. 5| mij mgxKiY MVb K‡i cvUxMwYZxq mgm¨v mgvavb 2 wU cÖkœ _vK‡e, 1 wUi DËi w`‡Z n‡e| 6X1=6 6| †jLwPÎ AsKb †_‡K 2 wU cÖkœ _vK‡e, 1 wUi DËi w`‡Z n‡e| 6X1=6  R¨vwgwZ = 28 b¤^i 1| Dccv`¨ Gi cÖgvY I hyw³g~jK cÖkœ 1g, 2q, I 3q Aa¨vq †_‡K 1 wU K‡i †gvU 3 wU cÖkœ _vK‡e 7 X 2 = 14 2 wUi DËi w`‡Z n‡e| 2| m¤úv`¨ †_‡K 2 wU cÖkœ _vK‡e 1 wUi DËi w`‡Z n‡e| 7X1=7 3| Abykxjbx 1 †_‡K 4 ch©š—, Gi ga¨ †_‡K 2 wU cÖkœ _vK‡e 1 wUi DËi w`‡Z n‡e| 7X1=7 NCTB KZ©„K cÖKvwkZ 8g †kªYxi cvV¨eB †_‡K cÖkœcÎ cÖYxZ n‡e|
  • 14. †R Gm wm cix¶v - 2010 mvaviY weÁvb cÖ‡kœi aviv I gvbe›Ub mgq : 3 N›Uv c~Y©gvb : 100  m„Rbkxj (iPbvg~jK) As‡k 6 wU cÖkœ 10 X 6 = 60 b¤^i  eûwbe©vPbx As‡k 40 wU cÖkœ 1 X 40 = 40 b¤^i †gvU = 100 b¤^i  m„Rbkxj (iPbvg~jK) Ask = 60 b¤^i (K)KÑwefvM:Ñ Rxe weÁvb, f~‡Mvj, cÖvK…wZK `~‡hv©M, RbmsL¨v I cwi‡ek| (L)LÑwefvM:Ñ c`v_© weÁvb (M)MÑwefvM:Ñ imvqb weÁvb wZbwU wefv‡Mi g‡a¨ ÔKÕ wefvM †_‡K 4 wU, ÔLÕ Ges ÔMÕ wefvM †_‡K 3 wU K‡i ‡gvU 10 wU cÖkœ _vK‡e| cÖ‡Z¨K wefvM †_‡K 02wU K‡i †gvU 06wU cÖ‡kœi DËi w`‡Z n‡e|  cÖwZwU m„Rbkxj cÖ‡kœi 4wU ¯—i I gvb K) Ávb ¯—i = 1 b¤^i L) Abyaveb ¯—i = 2 b¤^i M) cÖ‡qvM ¯—i = 3 b¤^i N) D”PZi ¯—i = 4 b¤^i †gvU = 10 b¤^i  eûwbe©vPbx Ask : (wZb ai‡bi †gvU 40 wU cÖkœ _vK‡e) = 40 b¤^i 1|mvaviY eûwbe©vPbx cÖkœ 30 wU (24 wU Ávbg~jK I 6 wU Abyaveb) 2|eûc`x mgvwßm~PK cÖkœ 04 wU
  • 15. 3|Awfbœ Z_¨wfwËK cÖkœ 06 wU G‡¶‡Î cvV¨ eB‡qi cÖwZwU Aa¨vq †_‡K Kgc‡¶ 1 (GK) wU K‡i cÖkœ _vKv evÃbxq| cvV¨µg : m¤ú~Y© eB| NCTB KZ©„K cÖKvwkZ 8g †kªYxi cvV¨eB †_‡K cÖkœcÎ cÖYxZ n‡e|
  • 16. †R Gm wm cix¶v - 2010 mvgvwRK weÁvb cÖ‡kœi aviv I gvbe›Ub mgq : 3 N›Uv c~Y©gvb : 100  m„Rbkxj (iPbvg~jK) As‡k 6 wU cÖkœ 10 X 6 = 60 b¤^i  eûwbe©vPbx As‡k 40 wU cÖkœ 1 X 40 = 40 b¤^i †gvU = 100 b¤^i  m„Rbkxj (iPbvg~jK) Ask = 60 b¤^i (L)KÑwefvM :Ñ mgvR weÁvb, BwZnvm I †cŠibxwZ| (M)LÑwefvM :Ñ A_©bxwZ, RbmsL¨v wbqš¿Y Ges †hŠZzK cÖ_v I evsjv‡`‡ki bvix| (N)MÑwefvM :Ñ f~‡Mvj (K wefvM †_‡K 4 wU, L I M wefvM †_‡K 3 wU K‡i †gvU 10 wU cÖkœ _vK‡e| cÖ‡Z¨K wefvM †_‡K 2 wU K‡i †gvU 6 wU cÖ‡kœi DËi w`‡Z n‡e|)  cÖwZwU m„Rbkxj cÖ‡kœi 4wU ¯—i I gvb K) Ávb ¯—i = 1 b¤^i L) Abyaveb ¯—i = 2 b¤^i M) cÖ‡qvM ¯—i = 3 b¤^i N) D”PZi ¯—i = 4 b¤^i †gvU = 10 b¤^i  eûwbe©vPbx Ask : (†gvU 40 wU cÖkœ _vK‡e) = 40 b¤^i 1|mvaviY eûwbe©vPbx cÖkœ 30 wU (24 wU Ávbg~jK I 6 wU Abyaveb) 2|eûc`x mgvwßm~PK cÖkœ 04 wU 3|Awfbœ Z_¨wfwËK cÖkœ 06 wU
  • 17. G‡¶‡Î cvV¨ eB‡qi cÖwZwU Aa¨vq †_‡K Kgc‡¶ 1 (GK) wU K‡i cÖkœ _vKv evÃbxq| cvV¨µg : m¤ú~Y© eB| NCTB KZ©„K cÖKvwkZ 8g †kªYxi cvV¨eB †_‡K cÖkœcÎ cÖYxZ n‡e|
  • 18. †R Gm wm cix¶v - 2010 Bmjvg ag© wk¶v cÖ‡kœi aviv I gvbe›Ub mgq : 3 N›Uv c~Y©gvb : 100  m„Rbkxj (iPbvg~jK) As‡k 6 wU cÖkœ 10 X 6 = 60 b¤^i  eûwbe©vPbx As‡k 40 wU cÖkœ 1 X 40 = 40 b¤^i †gvU = 100 b¤^i  m„Rbkxj (iPbvg~jK) Ask = 60 b¤^i 9 wU cÖkœ †_‡K 6 wUi DËi w`‡Z n‡e| 6× 10 = 60 cÖ‡Z¨K Ask †_‡K by¨bZg 2 wU K‡i †gvU 6 wU cª‡kœi DËi w`‡Z n‡e| we: `ª: AskÑK †_‡K 4 wU Ges AskÑL †_‡K 5 wU me©‡gvU 9 wU cÖkœ †mU n‡e| Ask Ñ ÔKÕ : 1g I 2q Aa¨vq| AskÑÔLÕ : 3q, 4_© I 5g Aa¨vq  cÖwZwU m„Rbkxj cÖ‡kœi 4wU ¯—i I gvb K) Ávb ¯—i = 1 b¤^i L) Abyaveb ¯—i = 2 b¤^i M) cÖ‡qvM ¯—i = 3 b¤^i N) D”PZi ¯—i = 4 b¤^i †gvU = 10 b¤^i  eûwbe©vPbx Ask : (wZb ai‡bi †gvU 40 wU cÖkœ _vK‡e) = 40 b¤^i 1|mvaviY eûwbe©vPbx cÖkœ 30 wU (24 wU Ávbg~jK I 6 wU Abyaveb)
  • 19. 2|eûc`x mgvwßm~PK cÖkœ 04 wU 3|Awfbœ Z_¨wfwËK cÖkœ 06 wU †gvU = 40 b¤^i we: `ª: eûwbe©vPbx cÖkœ cÖYq‡bi †¶‡Î Ávb, Abyaveb, cÖ‡qvM I D”PZi `¶Zv ¯—i AbymiY Ki‡Z n‡e|
  • 20. cvV¨µg 1g Aa¨vq Ñ m¤ú~Y©| 2q Aa¨vq Ñ m¤ú~Y©| 3q Aa¨vq Ñ (I) KyiAvb gvRx‡`i wk¶v (II) ZvRex` (III) m~iv Avj K`i (IV) m~iv whjhvj (V) m~iv Avj dxj (VI) m~iv KzivBk (VII) AvqvZzj Kzimx (VIII) gybvRvZg~jK wZbwU AvqvZ (IX) nv`xm kixd wk¶v (X) bxwZ g~jK nv`xm 4_© Aa¨vq Ñ m¤ú~Y© 5g Aa¨vq Ñ m¤ú~Y©  DËicÎ g~j¨vqb wb‡`©wkKv (1) ‰be©¨w³K cÖ‡kœi mwVK Dˇi c~Y© b¤^i cv‡e| (2) ‰be©¨w³K cÖ‡kœi Dˇi †Kvb fMœ b¤^i †`qv hv‡ebv| (3) m„Rbkxj (iPbvg~jK) cÖ‡kœi h_vh_ I wbf©yj Dˇii Rb¨ c~Y© b¤^i cv‡e| G‡¶‡Î KÑAs‡ki Rb¨ 0 (k~Y¨) A_ev 1| LÑAs‡ki Rb¨ 0 (k~Y¨) A_ev 1 ev 2| MÑAs‡ki Rb¨ 0 (k~Y¨) A_ev 1, 2 ev 3| NÑAs‡ki Rb¨ 0 (k~Y¨) A_ev 1, 2, 3 ev 4| (5) c~Y© b¤^i cvIqvi †¶‡Î KziAvi I nvw`‡mi †idv‡iÝ AMÖvwaKvi cv‡e| NCTB KZ©„K cÖKvwkZ 8g †kªYxi cvV¨eB †_‡K cÖkœcÎ cÖYxZ n‡e|
  • 21. †R Gm wm cix¶v - 2010 wn›`y ag© wk¶v cÖ‡kœi aviv I gvbe›Ub mgq : 3 N›Uv c~Y©gvb : 100  m„Rbkxj (iPbvg~jK) As‡k 6 wU cÖkœ 10 X 6 = 60 b¤^i  eûwbe©vPbx As‡k 40 wU cÖkœ 1 X 40 = 40 b¤^i †gvU = 100 b¤^i  m„Rbkxj (iPbvg~jK) Ask = 60 b¤^i K, L I M wZbwU Ask (cÖwZ As‡k 3wU K‡i) †gvU 9 wU cÖkœ †mU _vK‡e| cÖ‡Z¨K Ask †_‡K Kgc‡¶ 1wU K‡i †gvU 06 wU cÖkœ †m‡Ui DËi w`‡Z n‡e| K Ask - (mªóv I m„wó, ¯—e-†¯—vÎ-cÖv_©bv, ag©`k©b, ag©MÖš’) L Ask - (†`e-‡`ex, ag©vPvi, bxwZÁvb, ag©vag©) M Ask - (DcvL¨vb, Av`k© RxebPwiZ)  cÖwZwU m„Rbkxj cÖ‡kœi gvb = 10 b¤^i L. Ávb `¶Zv hvPvBg~jK cÖ‡kœi gvb 1 M.Abyaveb `¶Zv hvPvBg~jK cÖ‡kœi gvb 2 N.cÖ‡qvM `¶Zv hvPvBg~jK cÖ‡kœi gvb 3 O.D”PZi wPš—b `¶Zv hvPvBg~jK cÖ‡kœi gvb4 †gvU = 10  eûwbe©vPbx Ask : (wZb ai‡bi †gvU 40 wU cÖkœ _vK‡e) = 40 b¤^i 1|mvaviY eûwbe©vPbx cÖkœ 30 wU (24 wU Ávbg~jK I 6 wU Abyaveb)
  • 22. 2|eûc`x mgvwßm~PK cÖkœ 04 wU 3|Awfbœ Z_¨wfwËK cÖkœ 06 wU NCTB KZ©„K cÖKvwkZ 8g †kªYxi cvV¨eB †_‡K cÖkœcÎ cÖYxZ n‡e|
  • 23. †R Gm wm cix¶v - 2010 †eŠ× ag© wk¶v cÖ‡kœi aviv I gvbe›Ub mgq : 3 N›Uv c~Y©gvb : 100  m„Rbkxj (iPbvg~jK) As‡k 6 wU cÖkœ 10 X 6 = 60 b¤^i  eûwbe©vPbx As‡k 40 wU cÖkœ 1 X 40 = 40 b¤^i †gvU = 100 b¤^i  m„Rbkxj (iPbvg~jK) Ask = 60 b¤^i K I L `ywU Ask _vK‡e K Ask - 1g †_‡K 5g Aa¨vq ch©š— L Ask - 6ô †_‡K 12k Aa¨vq ch©š— K As‡k 4 wU Ges L As‡k 5 wU †gvU 9 wU cÖkœ _vK‡e| cÖwZ Ask †_‡K Kgc‡¶ 02 wU K‡i †gvU 6wU cÖ‡kœi DËi w`‡Z n‡e|  cÖwZwU m„Rbkxj cÖ‡kœi gvb = 10 b¤^i K. Ávb `¶Zv hvPvBg~jK cÖ‡kœi gvb 1 L. Abyaveb `¶Zv hvPvBg~jK cÖ‡kœi gvb 2 M.cÖ‡qvM `¶Zv hvPvBg~jK cÖ‡kœi gvb 3 N.D”PZi wPš—b `¶Zv hvPvBg~jK cÖ‡kœi gvb4 †gvU = 10  eûwbe©vPbx Ask : (wZb ai‡bi †gvU 40 wU cÖkœ _vK‡e) = 40 b¤^i 1|mvaviY eûwbe©vPbx cÖkœ 30 wU 2|eûc`x mgvwßm~PK cÖkœ 04 wU
  • 24. 3|Awfbœ Z_¨wfwËK cÖkœ 06 wU NCTB KZ©„K cÖKvwkZ 8g †kªYxi cvV¨eB †_‡K cÖkœcÎ cÖYxZ n‡e|
  • 25. †R Gm wm cix¶v - 2010 wLª÷ ag© wk¶v cÖ‡kœi aviv I gvbe›Ub mgq : 3 N›Uv c~Y©gvb : 100  m„Rbkxj (iPbvg~jK) As‡k 6 wU cÖkœ 10 X 6 = 60 b¤^i  eûwbe©vPbx As‡k 40 wU cÖkœ 1 X 40 = 40 b¤^i †gvU = 100 b¤^i  m„Rbkxj (iPbvg~jK) Ask = 60 b¤^i K, L, M, wZbwU Ask: cÖwZwU As‡k †_‡K 3wU K‡i †gvU 9wU cÖkœ †mU _vK‡e| cÖ‡Z¨K Ask †_‡K Kgc‡¶ 1wU K‡i †gvU 6wU cÖkœ †m‡Ui DËi w`‡Z n‡e| K Ask: 1g Aa¨vq: Ck¦‡ii cÖwZ eva¨Zv, 2q Aa¨vq: bvgvb, 3q Aa¨vq: `vwb‡qj, 4_© Aa¨vq: †hvnb evßvBR‡Ki mZK©evYx L Ask: 5g Aa¨vq: wLªw÷q ¸Yvejx, 6ô Aa¨vq: wLªw÷q Rxe‡b cweÎ AvZ¥vi `vb, 7g Aa¨vq: gÊjx M Ask: 8g Aa¨vq: evw߯§, 9g Aa¨vq: †Ri“Rv‡j‡g hxïi cÖ‡ek, 10g Aa¨vq: Rxeb`vZv hxïi g„Zz¨ I cybi“Ìvb  cÖwZwU m„Rbkxj cÖ‡kœi gvb = 10 b¤^i K. Ávb `¶Zv hvPvBg~jK cÖ‡kœi gvb: 1 L. Abyaveb `¶Zv hvPvBg~jK cÖ‡kœi gvb: 2 M. cÖ‡qvM `¶Zv hvPvBg~jK cÖ‡kœi gvb: 3 N. D”PZi wPš—b `¶Zv hvPvBg~jK cÖ‡kœi gvb: 4 †gvU = 10 b¤^i  eûwbe©vPbx Ask (wZb ai‡bi †gvU 40wU cÖkœ _vK‡e) = 40 b¤^i
  • 26. 1| mvaviY eûwbe©vPbx cÖkœ 30wU (24wU Ávb g~jK 6wU Abyaveb g~jK) 2| eûc`x mgvwßm~PK cÖkœ 4wU 3| Awfbœ Z_¨wfwËK cÖkœ 6wU eB : wLª÷ag© wk¶v m¤ú~Y© eB NCTB KZ©„K cÖKvwkZ 8g †kªYxi cvV¨eB †_‡K cÖkœcÎ cÖYxZ n‡e|
  • 27. †R Gm wm cix¶v - 2010 K…wl wk¶v cÖ‡kœi aviv I gvbe›Ub mgq : 3 N›Uv c~Y©gvb : 100  m„Rbkxj (iPbvg~jK) As‡k 6 wU cÖkœ 10 X 6 = 60 b¤^i  eûwbe©vPbx As‡k 40 wU cÖkœ 1 X 40 = 40 b¤^i †gvU = 100 b¤^i  m„Rbkxj (iPbvg~jK) Ask = 60 b¤^i cÖ‡Z¨K Aa¨vq †_‡K Kgc‡¶ 01 wU K‡i †gvU 9wU cÖkœ _vK‡e Ges cÖ‡Z¨K Aa¨vq †_‡K Kgc‡¶ 01 wU K‡i 6wU cÖ‡kœi DËi w`‡Z n‡e|  cÖwZwU m„Rbkxj cÖ‡kœi gvb = 10 b¤^i K)Ávb `¶Zv hvPvBg~jK cÖ‡kœi gvb 1 L) Abyaveb `¶Zv hvPvBg~jK cÖ‡kœi gvb 2 M)cÖ‡qvM `¶Zv hvPvBg~jK cÖ‡kœi gvb 3 N)D”PZi wPš—b `¶Zv hvPvBg~jK cÖ‡kœi gvb4 †gvU = 10  eûwbe©vPbx Ask (wZb ai‡bi †gvU 40 wU cÖkœ _vK‡e) = 40 b¤^i 1|mvaviY eûwbe©vPbx cÖkœ 30 wU (24 wU Ávbg~jK I 6 wU Abyaveb) 2|eûc`x mgvwßm~PK cÖkœ 04wU 3|Awfbœ Z_¨wfwËK cÖkœ 06wU
  • 28. NCTB KZ©„K cÖKvwkZ 8g †kªYxi cvV¨eB †_‡K cÖkœcÎ cÖYxZ n‡e|
  • 29. †R Gm wm cix¶v - 2010 Mvn©¯’¨ A_©bxwZ cÖ‡kœi aviv I gvbe›Ub mgq : 3 N›Uv c~Y©gvb : 100  m„Rbkxj (iPbvg~jK) As‡k 6 wU cÖkœ 10 X 6 = 60 b¤^i  eûwbe©vPbx As‡k 40 wU cÖkœ 1 X 40 = 40 b¤^i †gvU = 100 b¤^i  m„Rbkxj (iPbvg~jK) Ask = 60 b¤^i 1g, 2q, 4_© Aa¨vq †_‡K 02 wU K‡i Ges 3q Aa¨vq †_‡K 03 wU †gvU 9wU cÖkœ _vK‡e, K Ges L cÖ‡Z¨K Ask †_‡K Kgc‡¶ 1wU K‡i †gvU 6wU cÖ‡kœi DËi w`‡Z n‡e|  cÖwZwU m„Rbkxj cÖ‡kœi gvb = 10 b¤^i K. Ávb `¶Zv hvPvBg~jK cÖ‡kœi gvb 1 L. Abyaveb `¶Zv hvPvBg~jK cÖ‡kœi gvb 2 M. cÖ‡qvM `¶Zv hvPvBg~jK cÖ‡kœi gvb 3 N. D”PZi wPš—b `¶Zv hvPvBg~jK cÖ‡kœi gvb 4 †gvU = 10  eûwbe©vPbx Ask (wZb ai‡bi †gvU 40 wU cÖkœ _vK‡e) = 40 b¤^i 1|mvaviY eûwbe©vPbx cÖkœ 30 wU (24 wU Ávbg~jK I 6 wU Abyaveb) 2|eûc`x mgvwßm~PK cÖkœ 06 wU 3|Awfbœ Z_¨wfwËK cÖkœ 04 wU NCTB KZ©„K cÖKvwkZ 8g †kªYxi cvV¨eB †_‡K cÖkœcÎ cÖYxZ n‡e|
  • 30. welqwfwËK cÖ‡kœiaviv I gvbe›U‡b mvwe©K mn‡hvwMZvq : 1| Rbve gvmy`v †eMg Dc-cix¶v wbqš¿K (gva¨wgK) gva¨wgK I D”P gva¨wgK wk¶v †evW©, XvKv| 2| Rbve †gvt gwnDwÏb 3| Rbve gynv¤§` dqmj BDmyd we‡kl `ªóe¨ : JSC cix¶v myôzfv‡e MÖn‡Yi j‡¶ KZ©„c¶ cÖ‡qvR‡b Dch©y³ †h‡Kvb welq cwieZ©b Ki‡Z cvi‡eb| cwieZ©‡bi m‡½ m‡½ Avgiv I‡qe mvB‡Ui gva¨‡g Rvwb‡q †`e|