ตรีโกณมิติ ตรีโกณ ความหมายตามพจนานุกรมแปลว่า สามเหลี่ยม  ตรีโกณมิติ คือ คณิตศาสตร์แขนงหนึ่งที่ว่าด้วยการคำนวณ  มุมของสามเห...
ความเป็นมา เมื่อ  640-546  ปี ก่อนคริสต์ศักราช ทาเรส  (thales) คำนวณหาความสูง ของพีรามิด ในประเทศอียิปต์โดยอาศัยเงา วิธีหน...
อัตราส่วนตรีโกณมิติ    อัตราส่วนตรีโกณมิติ  ( Trigonometric Ratio)  หมายถึง อัตราส่วนของด้านของรูปสามเหลี่ยมมุมฉาก การเรีย...
จากรูป  ABC  เป็นรูปสามเหลี่ยมมุมฉาก  โดยมี  AĈB  = 90  องศา  ถ้าเราพิจารณาที่มุม  A 1.  ด้าน  AB  เรียกว่า  ด้านตรงข้ามมุ...
"Sine A"  ไซน์ของมุม  A  หรือเขียนย่อว่า  sin A  หาได้จากอัตราส่วนของความยาวด้านตรงข้ามมุม  A  ต่อความยาวด้านตรง...
ข้อสังเกต 1.  0 < sin A < 1  และ  cosec A > 1 2.  0 < cos A < 1  และ  sec A > 1 3.  sin ( A + B )     sin A + sin B 4.  =...
ค่าของฟังก์ชันตรีโกณมิติ  อัตราส่วนตรีโกณมิติ
เอกลักษณ์ตรีโกณมิติ นิยาม เอกลักษณ์ตรีโกณมิติ  คือ  การเท่ากันของอัตราส่วนตรีโกณมิติที่ต่างกันและเป็นจริงสำหรับทุกๆค่าของอ...
  ฟังก์ชันของมุมรอบจุด ข้อสังเกต     1.  ฟังก์ชัน       90o    +    A        ,          270o    +    A                  จะ...
- sin A cos A - tan A - cot A sec A - csc A sin A cos A tan A cot A sec A csc A - sin A cos A - tan A - cot A sec A - csc ...
หน่วยองศา 1  องศา       60' ( ลิปดา )  1  ลิปดา      60&quot; ( ฟิลิปดา ) หน่วยเรเดียน   มุม
เครื่องหมายของฟังก์ชันตรีโกณมิติตามควอแดรนต์
Upcoming SlideShare
Loading in …5
×

ตรีโกณ

3,840 views
3,710 views

Published on

0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
3,840
On SlideShare
0
From Embeds
0
Number of Embeds
6
Actions
Shares
0
Downloads
19
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

ตรีโกณ

  1. 1. ตรีโกณมิติ ตรีโกณ ความหมายตามพจนานุกรมแปลว่า สามเหลี่ยม ตรีโกณมิติ คือ คณิตศาสตร์แขนงหนึ่งที่ว่าด้วยการคำนวณ มุมของสามเหลี่ยม
  2. 2. ความเป็นมา เมื่อ 640-546 ปี ก่อนคริสต์ศักราช ทาเรส (thales) คำนวณหาความสูง ของพีรามิด ในประเทศอียิปต์โดยอาศัยเงา วิธีหนึ่งที่ทาเรสใช้คือ คำนวณความสูงของพีรามิดจากความยาวของเงาของพีรามิด ในขณะที่เงาของเขามีความยาวเท่ากับความสูงของเขาเอง อีกวิธีหนึ่งที่ทาเรสใช้คำนวณ ความสูงของพีรามิดคือ การเปรียบเทียบความยาวของเงาของพีรามิดกับความยาวของเงาของไม้ ( ไม้ที่ทราบความยาว ถ้าสมัยนี้ก็คือไม้เมตรนั่นเอง ) โดยอาศัยรูปสามเหลี่ยมคล้าย ซึ่งก็คือ อัตราส่วนตรีโกณมิติที่เรียกว่า แทนเจนต์ (tangent) นั่นเอง
  3. 3. อัตราส่วนตรีโกณมิติ   อัตราส่วนตรีโกณมิติ ( Trigonometric Ratio) หมายถึง อัตราส่วนของด้านของรูปสามเหลี่ยมมุมฉาก การเรียนในเรื่องนี้ผู้เรียนจำเป็นต้อง ใช้ความรู้เดิมเรื่องสามเหลี่ยมคล้ายเพื่อเป็นพื้นฐานในการทำความเข้าใจ การเรียนวิชาตรีโกณมิติให้ได้ดีนั้นต้องจำนิยามของตรีโกณมิติให้ได้ ระดับมัธยมต้นใช้นิยามสามเหลี่ยมมุมฉาก ซึ่งอัตราส่วนตรีโกณมิติ ก็คือ อัตราส่วนของความยาวด้านสองด้านของสามเหลี่ยมมุมฉากซึ่งจะมีชื่อเรียกดังนี้
  4. 4. จากรูป ABC เป็นรูปสามเหลี่ยมมุมฉาก โดยมี AĈB = 90 องศา ถ้าเราพิจารณาที่มุม A 1. ด้าน AB เรียกว่า ด้านตรงข้ามมุมฉาก 2. ด้าน BC เรียกว่า ด้านตรงข้ามมุม A 3. ด้าน AC เรียกว่า ด้านประชิดมุม A A B C a b c
  5. 5. &quot;Sine A&quot; ไซน์ของมุม A หรือเขียนย่อว่า sin A หาได้จากอัตราส่วนของความยาวด้านตรงข้ามมุม A ต่อความยาวด้านตรงข้ามมุมฉาก &quot;Cos A&quot; โคไซน์ของมุม A หรือเขียนย่อว่า cos A หาได้จากอัตราส่วนของความยาวด้านประชิดมุม A ต่อความยาวด้านตรงข้ามมุมฉาก &quot;Tangent A&quot; แทนเจนต์ของมุม A หรือเขียนย่อว่า tan A หาได้จากอัตราส่วนของความยาวด้านตรงข้ามมุม A ต่อความยาวด้านประชิดมุม A ส่วนฟังก์ชัน cosec, sec และ cot นั้น ก็ใช้นิยามเข้าช่วย ซึ่งเป็นส่วนกลับของ sin, cos และ tan ตามลำดับ จึงต้องจำฟังก์ชัน sin, cos, tan ก็จะได้ในส่วนของ cosec, sec และ cot ขึ้นมาเองโดยอัตโนมัติ &quot;Cotangent A&quot; โคแทนเจนต์ของมุม A หรือเขียนย่อว่า cot A หาได้จากอัตราส่วนของความยาวด้านด้านประชิดมุม A ต่อความยาวด้านตรงข้ามมุม A &quot;Secant A&quot; ซีแคนต์ของมุม A หรือเขียนย่อว่า sec A หาได้จากอัตราส่วนของความยาวด้านตรงข้ามมุมฉาก ต่อ ความยาวด้านประชิดมุม A &quot;Cosecant A&quot; โคซีแคนต์ของมุม A หรือเขียนย่อว่า cosec A หาได้จากอัตราส่วนของความยาวด้านตรงข้ามมุมฉาก ต่อ ความยาวด้านตรงข้ามมุม A
  6. 6. ข้อสังเกต 1. 0 < sin A < 1 และ cosec A > 1 2. 0 < cos A < 1 และ sec A > 1 3. sin ( A + B )  sin A + sin B 4. =  5. (sin A)(sin A) = (sin A) 2 = sin 2 A  sin A 2 6. sin A = cos ( 90 – A ) 7. cos A = sin ( 90 – A ) 8. tan A = cot ( 90 – A ) 9. sec A = cosec ( 90 – A )
  7. 7. ค่าของฟังก์ชันตรีโกณมิติ อัตราส่วนตรีโกณมิติ
  8. 8. เอกลักษณ์ตรีโกณมิติ นิยาม เอกลักษณ์ตรีโกณมิติ คือ การเท่ากันของอัตราส่วนตรีโกณมิติที่ต่างกันและเป็นจริงสำหรับทุกๆค่าขององศา เมื่อกำหนด A เป็นมุมแหลม 1. sin A x cosec A = 1 2. cos A x sec A = 1 3. tan A x cot A = 1 4. cos A x tan A = sin A 5. cot A x sin A = cos A 6. sin 2 A + cos 2 A = 1 7. sec 2 A - tan 2 A = 1 8. cosec 2 A - cot 2 A = 1
  9. 9.   ฟังก์ชันของมุมรอบจุด ข้อสังเกต   1. ฟังก์ชัน       90o    +   A        ,         270o    +   A                  จะได้    co-function   2. ฟังก์ชัน     180o    +   A        ,    n  .  360o    +   A    ,   -A       จะได้ฟังก์ชันเดิม
  10. 10. - sin A cos A - tan A - cot A sec A - csc A sin A cos A tan A cot A sec A csc A - sin A cos A - tan A - cot A sec A - csc A -cos A sin A - cot A - tan A csc A - sec A - cos A - sin A cot A tan A - csc A - sec A - sin A - cos A tan A cot A - sec A - csc A sin A - cos A - tan A - cot A - sec A csc A cos A - sin A - cot A - tan A - csc A sec A cos A sin A cot A tan A csc A sec A sin cos tan cot sec csc - A 360 o + A 360 o - A 270 o + A 270 o - A 180 o + A 180 o - A 90 o + A 90 o - A
  11. 11. หน่วยองศา 1 องศา       60' ( ลิปดา ) 1 ลิปดา      60&quot; ( ฟิลิปดา ) หน่วยเรเดียน มุม
  12. 12. เครื่องหมายของฟังก์ชันตรีโกณมิติตามควอแดรนต์

×