The Broadcast Function in Wireless Ad-Hoc Network 2002.9.2 Speaker:peter
Outline   <ul><li>An overview of the broadcast function </li></ul><ul><li>Difference between wired and wireless networks <...
Broadcast   <ul><li>Function: </li></ul><ul><ul><li>paging a particular host </li></ul></ul><ul><ul><li>sending an alarm s...
The difference of two type source Be notified Be shortest 5 forwarding nodes 4 hop time source 6 forwarding nodes 3 hop time
Difference between wired and wireless networks <ul><li>Broadcast property  </li></ul><ul><li>Reliability:  </li></ul><ul><...
Broadcast Storm <ul><li>Many retransmissions are redundant </li></ul><ul><ul><li>Because radio propagation is omnidirectio...
The essence of broadcast problem <ul><li>Reliability </li></ul><ul><ul><li>Reliable MAC negotiation  </li></ul></ul><ul><u...
Reliable MAC negotiation <ul><li>Extend RTS/CTS for broadcast </li></ul><ul><ul><li>Waiting for all neighbors to be ready ...
Collision avoidance <ul><li>Reduce redundant rebroadcasts </li></ul><ul><li>(minimize forwarding nodes) </li></ul><ul><ul>...
Minimum Forwarding Set Problem <ul><li>Define :  </li></ul><ul><ul><li>Given a source  A </li></ul></ul><ul><ul><li>let  D...
Minimum Broadcasting Set Problem <ul><li>Define :  </li></ul><ul><ul><li>Given a source  A </li></ul></ul><ul><ul><li>Find...
Optimization  <ul><li>Minimize the power consumption  </li></ul><ul><li>(Minimum-Energy Broadcast Tree Problem) </li></ul>...
Categorization of present protocols <ul><li>Simple flooding </li></ul><ul><li>Area based method  (by reference [3]) </li><...
Flooding <ul><li>Each node forwarding the broadcasting packets exactly one time </li></ul><ul><ul><li>Using Process ID </l...
Area Based Method 1
Area Based Method 2 <ul><li>Maximum additional coverage of previous transmission:  </li></ul><ul><li>Average additional co...
Area Based Method 3 The expected additional coverage after hearing the message  k  times, is expected to decrease quickly ...
Area Based Method 4 <ul><li>Counter based scheme: </li></ul><ul><ul><li>Using “ Random Assessment Delay ” (RAD) </li></ul>...
Area Based Method 5 <ul><li>Distance based scheme: </li></ul><ul><ul><li>Using “ Random Assessment Delay ” (RAD) </li></ul...
Area Based Method 6 <ul><li>Location based scheme: </li></ul><ul><ul><li>Using “ Random Assessment Delay ” (RAD) </li></ul...
Neighbor Knowledge Method <ul><li>Neighborhood information </li></ul><ul><li>How to decision forwarding nodes </li></ul><u...
Scalable Broadcast Algorithm (SBA) <ul><li>Information: </li></ul><ul><ul><li>Hello message (2-hop) </li></ul></ul><ul><li...
Self pruning <ul><li>Information: </li></ul><ul><ul><li>Hello message (1-hop) </li></ul></ul><ul><ul><li>Piggyback adjacen...
Multipoint relaying <ul><li>Information: </li></ul><ul><ul><li>Hello message (2-hop) </li></ul></ul><ul><li>Forwarding nod...
Dominant pruning <ul><li>Information: </li></ul><ul><ul><li>Hello message (2-hop) </li></ul></ul><ul><li>Forwarding node d...
Dominant pruning N(N(v j )) B(v i ,v j ) U N(v i ) N(v j ) v i v j
The drawback of present set cover based protocols 1 … i-1 i i+1 i+2 v i-1 v i s When a node  v i   received the broadcast ...
The drawback of present set cover based protocols 2 … i-1 i i+1 i+2 v i-1 v i1 s When we will select some level i+1 nodes ...
Forwarding Set Problem in unit disk graph Q 1 Q 2 Q 3 Q 4 F i   is the output of the   -approximation  algorithm which se...
MCDS based algorithm <ul><li>Approximation Algorithm: </li></ul><ul><ul><li>Definition:  A piece is defined as a white nod...
MCDS based algorithm in unit disk graph 1 <ul><li>Idea:  </li></ul><ul><ul><li>Any MIS (maximal independent set) is also a...
MCDS based algorithm in unit disk graph 2 <ul><li>Lemma: The size of any MIS in a unit disk graph is at most four times of...
MCDS based algorithm in unit disk graph 3 A node is adjacent to at  most five independent  nodes in unit disk graph  at mo...
Comparison  350x350  r:100
Ultra WideBand Technology (UWB) By Chiang Jui-Hao
What is Ultra Wideband? <ul><li>Originally referred to </li></ul><ul><ul><li>“ baseband”, “carrier-free”, or impulse </li>...
Compare with narrowband and wideband <ul><li>UWB systems have two characteristics </li></ul><ul><li>Bandwidth is much grea...
UWB in Short Range Wireless  <ul><li>Spatial capacity : (bps/m 2 ) higher bit rates concentrated in smaller areas </li></u...
Compare with IEEE 802.11 and Bluetooth (cont.) <ul><li>UWB have greater spatial capacity </li></ul><ul><ul><li>From the Ha...
Notice of Proposed Rule Making <ul><li>In May of 2000, the FCC issued a Notice of Proposed Rule Making (NPRM) </li></ul><u...
Ultra-Wideband transceiver  <ul><li>Advantages: </li></ul><ul><ul><li>UWB is a “carrierless” system,thus we can remove tra...
UWB Advantages <ul><li>Extremely difficult to intercept </li></ul><ul><ul><li>Short pulse excitation generates wideband sp...
UWB Advantages (cont.) <ul><li>Commonality of signal generation and processing architectures </li></ul><ul><ul><li>Communi...
UWB Signal in  multi-path fading channel <ul><li>Multi-path fading results from the destructive interference caused by the...
UWB Applications
UWB operation and technology <ul><li>Imaging Systems </li></ul><ul><ul><li>Ground Penetrating Radar Systems  </li></ul></u...
Upcoming SlideShare
Loading in...5
×

The Broadcasting Problem In Wireless Ad Hoc Network

1,235

Published on

Published in: Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
1,235
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
34
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide
  • The Broadcasting Problem In Wireless Ad Hoc Network

    1. 1. The Broadcast Function in Wireless Ad-Hoc Network 2002.9.2 Speaker:peter
    2. 2. Outline <ul><li>An overview of the broadcast function </li></ul><ul><li>Difference between wired and wireless networks </li></ul><ul><li>The essence of broadcast problem </li></ul><ul><li>Categorization of present protocols </li></ul><ul><li>Ultra WideBand technology </li></ul><ul><li>Broadcast protocol for Ultra WideBand ? </li></ul>
    3. 3. Broadcast <ul><li>Function: </li></ul><ul><ul><li>paging a particular host </li></ul></ul><ul><ul><li>sending an alarm signal </li></ul></ul><ul><ul><li>finding a route to a particular host </li></ul></ul><ul><li>Two type: </li></ul><ul><ul><li>Be notified -> topology change </li></ul></ul><ul><ul><li>Be shortest -> finding route </li></ul></ul><ul><li>Objective: </li></ul><ul><ul><li>Reliability </li></ul></ul><ul><ul><li>(all nodes have received the broadcast packet) </li></ul></ul><ul><ul><li>Optimization </li></ul></ul>
    4. 4. The difference of two type source Be notified Be shortest 5 forwarding nodes 4 hop time source 6 forwarding nodes 3 hop time
    5. 5. Difference between wired and wireless networks <ul><li>Broadcast property </li></ul><ul><li>Reliability: </li></ul><ul><ul><li>CSMA/CD vs. CSMA/CA </li></ul></ul><ul><ul><li>RTS/CTS/data/ACK procedure is too cumbersome to implement for broadcast </li></ul></ul><ul><ul><li>Simultaneous transmission and hidden node problem </li></ul></ul><ul><li>Expensive bandwidth </li></ul><ul><li>Therefore the flooding which is the simple broadcast mechanism in wired networks is not suitable in wireless networks (broadcast storm problem) </li></ul>
    6. 6. Broadcast Storm <ul><li>Many retransmissions are redundant </li></ul><ul><ul><li>Because radio propagation is omnidirectional and a physical location may be covered by the transmission ranges of several nodes </li></ul></ul><ul><li>Heavy contention could exist </li></ul><ul><ul><li>Because retransmitting nodes are probably close to each other </li></ul></ul><ul><li>Collisions are more likely to occur </li></ul><ul><ul><li>Because the RTS/CTS dialogue is inapplicable and the timing of retransmissions is highly correlated </li></ul></ul>
    7. 7. The essence of broadcast problem <ul><li>Reliability </li></ul><ul><ul><li>Reliable MAC negotiation </li></ul></ul><ul><ul><li>Collision avoidance </li></ul></ul><ul><ul><ul><li>Reduce redundant rebroadcasts </li></ul></ul></ul><ul><ul><ul><li>Avoid Simultaneous transmission </li></ul></ul></ul><ul><li>Optimization </li></ul><ul><ul><li>Minimize the forwarding nodes </li></ul></ul><ul><ul><li>Minimize the power consumption </li></ul></ul>
    8. 8. Reliable MAC negotiation <ul><li>Extend RTS/CTS for broadcast </li></ul><ul><ul><li>Waiting for all neighbors to be ready </li></ul></ul><ul><ul><ul><li>RTS collision ? </li></ul></ul></ul><ul><ul><ul><li>Forwarding ? </li></ul></ul></ul><ul><ul><li>Sending broadcast packets anyway </li></ul></ul><ul><ul><ul><li>Affect other transmission </li></ul></ul></ul><ul><ul><li>Repeatedly broadcast until all neighbor received </li></ul></ul><ul><ul><ul><li>Acknowledgement </li></ul></ul></ul>A The neighborhood state of mobile nodes is under control by RTS/CTS
    9. 9. Collision avoidance <ul><li>Reduce redundant rebroadcasts </li></ul><ul><li>(minimize forwarding nodes) </li></ul><ul><ul><li>Be shortest  minimum forwarding set </li></ul></ul><ul><ul><li>Be notified  minimum broadcasting set </li></ul></ul><ul><li>Avoid Simultaneous transmission </li></ul><ul><ul><li>Different timing of rebroadcasts </li></ul></ul>
    10. 10. Minimum Forwarding Set Problem <ul><li>Define : </li></ul><ul><ul><li>Given a source A </li></ul></ul><ul><ul><li>let D and P be the sets of k and k+1 hop neighbors of A </li></ul></ul><ul><ul><li>Find a minimum-size subset F of D such that every node in P is within the coverage area of at least one node from F </li></ul></ul><ul><li>In general graph: </li></ul><ul><ul><li>NP-complete: reduce “ Set Cover ” to it </li></ul></ul><ul><ul><li>Approximation ratio: log n </li></ul></ul><ul><li>In unit disk graph: </li></ul><ul><ul><li>Unknown </li></ul></ul><ul><ul><li>Approximation ratio: constant (by reference [1]) </li></ul></ul>
    11. 11. Minimum Broadcasting Set Problem <ul><li>Define : </li></ul><ul><ul><li>Given a source A </li></ul></ul><ul><ul><li>Find a spanning tree T such that the number of internal nodes is minimum </li></ul></ul><ul><li>In general graph: </li></ul><ul><ul><li>NP-hard: hard to “ Minimum Connected Dominating Set ” </li></ul></ul><ul><ul><li>Approximation ratio: log  (  is the maximum node degree) </li></ul></ul><ul><li>In unit disk graph: </li></ul><ul><ul><li>NP-hard </li></ul></ul><ul><ul><li>Approximation ratio: constant (by reference [2]) </li></ul></ul>
    12. 12. Optimization <ul><li>Minimize the power consumption </li></ul><ul><li>(Minimum-Energy Broadcast Tree Problem) </li></ul><ul><li>Define : </li></ul><ul><ul><li>Given a wireless ad hoc network M = ( N , L ) </li></ul></ul><ul><ul><li>A source node s to broadcast a message from s to all the other nodes such that the sum of transmission powers at all nodes is minimized </li></ul></ul><ul><li>Same as the Steiner Tree problem in directed graph: </li></ul><ul><ul><li>NP-complete: reduce “ 3-CNF SAT ” to it </li></ul></ul><ul><ul><li>Approximation ratio: n </li></ul></ul>
    13. 13. Categorization of present protocols <ul><li>Simple flooding </li></ul><ul><li>Area based method (by reference [3]) </li></ul><ul><ul><li>Counter based scheme </li></ul></ul><ul><ul><li>Distance based scheme </li></ul></ul><ul><ul><li>Location based scheme </li></ul></ul><ul><li>Neighbor knowledge method </li></ul><ul><ul><li>Neighborhood base </li></ul></ul><ul><ul><li>Set cover base </li></ul></ul><ul><ul><li>MCDS base </li></ul></ul>
    14. 14. Flooding <ul><li>Each node forwarding the broadcasting packets exactly one time </li></ul><ul><ul><li>Using Process ID </li></ul></ul>
    15. 15. Area Based Method 1
    16. 16. Area Based Method 2 <ul><li>Maximum additional coverage of previous transmission: </li></ul><ul><li>Average additional coverage: </li></ul><ul><li>≈ 0.41  r 2 </li></ul><ul><li>Average additional coverage </li></ul><ul><li>after having received a broadcast </li></ul><ul><li>message twice: ≈ 0.19  r 2 </li></ul>
    17. 17. Area Based Method 3 The expected additional coverage after hearing the message k times, is expected to decrease quickly as k increases.
    18. 18. Area Based Method 4 <ul><li>Counter based scheme: </li></ul><ul><ul><li>Using “ Random Assessment Delay ” (RAD) </li></ul></ul><ul><ul><li>The counter is incremented by one for each redundant packet received </li></ul></ul><ul><ul><li>If the counter is less than a threshold value when the RAD expires, the packet is rebroadcast. Otherwise, it is simply dropped </li></ul></ul>
    19. 19. Area Based Method 5 <ul><li>Distance based scheme: </li></ul><ul><ul><li>Using “ Random Assessment Delay ” (RAD) </li></ul></ul><ul><ul><li>Estimating the distance d between sender and receiver by signal strength </li></ul></ul><ul><ul><li>Calculate the additional coverage by d </li></ul></ul><ul><ul><li>(additional coverage = ) </li></ul></ul><ul><ul><li>If the additional coverage which is calculated by the minimum distance is more than a threshold value when the RAD expires, the packet is rebroadcast. Otherwise, it is simply dropped </li></ul></ul>
    20. 20. Area Based Method 6 <ul><li>Location based scheme: </li></ul><ul><ul><li>Using “ Random Assessment Delay ” (RAD) </li></ul></ul><ul><ul><li>Adding location information to the header of the broadcast packets </li></ul></ul><ul><ul><li>Calculate the additional coverage by k location information which are received during RAD </li></ul></ul><ul><ul><ul><li>Difficult to calculate exactly </li></ul></ul></ul><ul><ul><ul><li>Using grid-filling approximation </li></ul></ul></ul><ul><ul><li>If the additional coverage is more than a threshold value, the packet is rebroadcast. Otherwise, it is simply dropped </li></ul></ul>
    21. 21. Neighbor Knowledge Method <ul><li>Neighborhood information </li></ul><ul><li>How to decision forwarding nodes </li></ul><ul><ul><li>Neighborhood base </li></ul></ul><ul><ul><ul><li>SBA, Self pruning </li></ul></ul></ul><ul><ul><li>Set cover base </li></ul></ul><ul><ul><ul><li>Multipoint relaying, Dominant pruning, AHBP </li></ul></ul></ul><ul><ul><li>MCDS base </li></ul></ul>
    22. 22. Scalable Broadcast Algorithm (SBA) <ul><li>Information: </li></ul><ul><ul><li>Hello message (2-hop) </li></ul></ul><ul><li>Forwarding node decision: </li></ul><ul><ul><li>Node v j who receives the packet from v i checks whether the set N ( v j )-N( v i )-{ v i } is empty </li></ul></ul><ul><ul><li>Node v j schedules the packet for delivery with a RAD </li></ul></ul><ul><ul><li>(Random Assessment Delay) </li></ul></ul><ul><ul><li>Dynamically adjust the RAD to </li></ul></ul><ul><ul><li>(nodes with the most neighbors usually broadcast </li></ul></ul><ul><ul><li>before the others) </li></ul></ul>
    23. 23. Self pruning <ul><li>Information: </li></ul><ul><ul><li>Hello message (1-hop) </li></ul></ul><ul><ul><li>Piggyback adjacent node list in broadcast packets </li></ul></ul><ul><ul><li>(2-hop) </li></ul></ul><ul><ul><li>Store adjacent node list in cache </li></ul></ul><ul><li>Forwarding node decision: </li></ul><ul><ul><li>Node v j who receives the packet from v i checks whether the set N ( v j )-N( v i )-{ v i } is empty </li></ul></ul>v i v j
    24. 24. Multipoint relaying <ul><li>Information: </li></ul><ul><ul><li>Hello message (2-hop) </li></ul></ul><ul><li>Forwarding node decision: </li></ul><ul><ul><li>The sending node A selects forwarding nodes from it’s adjacent nodes </li></ul></ul><ul><ul><li>A select a minimum node set F  N ( A ) such that: </li></ul></ul><ul><ul><li>A node set U = N ( N ( A )) – N ( A ) </li></ul></ul><ul><ul><li>Piggyback forward list in “Hello” packets </li></ul></ul>
    25. 25. Dominant pruning <ul><li>Information: </li></ul><ul><ul><li>Hello message (2-hop) </li></ul></ul><ul><li>Forwarding node decision: </li></ul><ul><ul><li>The sending node selects forwarding nodes from it’s adjacent nodes </li></ul></ul><ul><ul><li>Node v j who receives the packet from v i , v j select a minimum node set F  N ( v j ) - N ( v i ) such that: </li></ul></ul><ul><ul><li>A node set U = N ( N ( v j )) – N ( v i ) – N ( v j ) </li></ul></ul><ul><ul><li>Piggyback forward list in broadcast packets </li></ul></ul>
    26. 26. Dominant pruning N(N(v j )) B(v i ,v j ) U N(v i ) N(v j ) v i v j
    27. 27. The drawback of present set cover based protocols 1 … i-1 i i+1 i+2 v i-1 v i s When a node v i received the broadcast packet from node v i-1 , it will select some forwarding nodes from N(v i )-N(v i-1 ) to cover all nodes in U. However, some nodes in U are not i+2 level nodes, and some nodes in N(v i )-N(v j ) are not i+1 level nodes.
    28. 28. The drawback of present set cover based protocols 2 … i-1 i i+1 i+2 v i-1 v i1 s When we will select some level i+1 nodes to cover all level i+2 nodes, the number of forwarding nodes selected by distributed algorithm can not be bounded to some ratio of the optimal solution ? v i2
    29. 29. Forwarding Set Problem in unit disk graph Q 1 Q 2 Q 3 Q 4 F i is the output of the  -approximation algorithm which select some nodes in blue area to cover all nodes in Q i OPT i is the optimal solution of Forwarding Set problem and lie on A i A 1 A 2 A 3 A 4
    30. 30. MCDS based algorithm <ul><li>Approximation Algorithm: </li></ul><ul><ul><li>Definition: A piece is defined as a white node or a black connected component </li></ul></ul><ul><ul><li>Initialize: all nodes are white </li></ul></ul><ul><ul><li>Procedure: </li></ul></ul><ul><ul><ul><li>At each step we pick a node u that gives the maximum (non-zero) reduction in the number of pieces. </li></ul></ul></ul><ul><ul><ul><li>coloring u black and coloring all adjacent white nodes gray. </li></ul></ul></ul><ul><ul><ul><li>Recursively connect pairs of black components by choosing a chain of two vertices. </li></ul></ul></ul><ul><ul><li>Approximation ratio: 3+log  (reference [4]) </li></ul></ul>
    31. 31. MCDS based algorithm in unit disk graph 1 <ul><li>Idea: </li></ul><ul><ul><li>Any MIS (maximal independent set) is also a DS, and conversely, any independent DS must be an MIS </li></ul></ul><ul><ul><li>The size of any MIS in a unit disk graph is at most four times of the size of the MCDS </li></ul></ul><ul><ul><li>The shortest distance between a node in MIS and it’s nearest node in MIS is at most three </li></ul></ul><ul><li>Algorithm: </li></ul><ul><ul><li>Find any MIS </li></ul></ul><ul><ul><li>Spanning all nodes in MIS </li></ul></ul><ul><li>Approximation ratio: 12 (reference [2]) </li></ul>
    32. 32. MCDS based algorithm in unit disk graph 2 <ul><li>Lemma: The size of any MIS in a unit disk graph is at most four times of the size of the MCDS </li></ul><ul><li>proof: </li></ul><ul><ul><li>U is any MIS, T is a spanning tree of MCDS </li></ul></ul><ul><ul><li>v 1 ,v 2 ,…,v |T| be an arbitrary preorder traversal of T </li></ul></ul><ul><ul><li>U i is the set of nodes in U that are adjacent to v i but none of v 1 , v 2 ,…,v i-1 </li></ul></ul><ul><ul><li>Then U 1 ,U 2 ,…,U |T| form a partition of U </li></ul></ul><ul><ul><li>|U 1 |  5, |U i |  4, 2  i  |T| </li></ul></ul>
    33. 33. MCDS based algorithm in unit disk graph 3 A node is adjacent to at most five independent nodes in unit disk graph at most 240  v i v j j=1~i-1 U i lie in a sector of at most 240 degree within the coverage range of node v i , this implies that |U i |  4
    34. 34. Comparison 350x350 r:100
    35. 35. Ultra WideBand Technology (UWB) By Chiang Jui-Hao
    36. 36. What is Ultra Wideband? <ul><li>Originally referred to </li></ul><ul><ul><li>“ baseband”, “carrier-free”, or impulse </li></ul></ul><ul><li>Any wireless transmission scheme </li></ul><ul><ul><li>occupies a bandwidth of more than 25% of a center frequency, or more than 1.5GHz </li></ul></ul>
    37. 37. Compare with narrowband and wideband <ul><li>UWB systems have two characteristics </li></ul><ul><li>Bandwidth is much greater, </li></ul><ul><ul><li>Defined by the Federal Communications Commission (FCC), is more than 25% of a center frequency or more than 1.5GHz </li></ul></ul><ul><li>Carrierless fashion </li></ul><ul><ul><li>“narrowband” and “wideband” use RF </li></ul></ul><ul><ul><li>UWB directly modulate an &quot;impulse&quot; that has a very sharp rise and fall time </li></ul></ul>
    38. 38. UWB in Short Range Wireless <ul><li>Spatial capacity : (bps/m 2 ) higher bit rates concentrated in smaller areas </li></ul><ul><li>For users gather in crowded spaces, the most critical parameter of a wireless system will be its spatial capacity </li></ul>[1]
    39. 39. Compare with IEEE 802.11 and Bluetooth (cont.) <ul><li>UWB have greater spatial capacity </li></ul><ul><ul><li>From the Hartley-Shannon law </li></ul></ul><ul><li>Potential </li></ul><ul><ul><li>for support of future high-capacity wireless systems </li></ul></ul>
    40. 40. Notice of Proposed Rule Making <ul><li>In May of 2000, the FCC issued a Notice of Proposed Rule Making (NPRM) </li></ul><ul><li>limit UWB </li></ul><ul><ul><li>transmitted power spectral density for frequencies greater than 2GHz. </li></ul></ul>
    41. 41. Ultra-Wideband transceiver <ul><li>Advantages: </li></ul><ul><ul><li>UWB is a “carrierless” system,thus we can remove traditional blocks such as carrier recovery loop,mixer…etc. </li></ul></ul><ul><ul><li>High data rate and number of users. </li></ul></ul><ul><ul><li>Robustness to multi-path fading. </li></ul></ul>[3]
    42. 42. UWB Advantages <ul><li>Extremely difficult to intercept </li></ul><ul><ul><li>Short pulse excitation generates wideband spectra – low energy densities </li></ul></ul><ul><ul><li>Low energy density also minimizes interference to other services </li></ul></ul><ul><li>Multipath immunity </li></ul><ul><ul><li>Time-gated detector can excise delayed returns - time separation </li></ul></ul>
    43. 43. UWB Advantages (cont.) <ul><li>Commonality of signal generation and processing architectures </li></ul><ul><ul><li>Communications </li></ul></ul><ul><ul><ul><li>LPI/D, High Data Rates, Multipath Tolerance </li></ul></ul></ul><ul><ul><li>Radar </li></ul></ul><ul><ul><ul><li>Inherent high precision – sub-centimeter ranging </li></ul></ul></ul><ul><ul><ul><li>Wideband excitation for detection of complex, low RCS targets </li></ul></ul></ul><ul><li>Low cost </li></ul><ul><ul><li>Nearly “all-digital” architecture </li></ul></ul><ul><ul><ul><li>Ideal for microminiaturization into a chipset </li></ul></ul></ul><ul><ul><li>Frequency diversity with minimal hardware modifications </li></ul></ul>
    44. 44. UWB Signal in multi-path fading channel <ul><li>Multi-path fading results from the destructive interference caused by the sum of several received paths that may be out of phase with each other.The very narrow pulses of UWB waveforms result in the multiple reflections being resolved independently rather than combining destructively . </li></ul>[4]
    45. 45. UWB Applications
    46. 46. UWB operation and technology <ul><li>Imaging Systems </li></ul><ul><ul><li>Ground Penetrating Radar Systems </li></ul></ul><ul><ul><li>Wall Imaging Systems </li></ul></ul><ul><ul><li>Through-wall Imaging Systems </li></ul></ul><ul><ul><li>Medical Systems </li></ul></ul><ul><ul><li>Surveillance Systems </li></ul></ul><ul><li>Vehicular Radar Systems </li></ul><ul><li>Communications and Measurement Systems </li></ul>
    1. A particular slide catching your eye?

      Clipping is a handy way to collect important slides you want to go back to later.

    ×