Graphing Quadradic
Upcoming SlideShare
Loading in...5
×
 

Graphing Quadradic

on

  • 1,085 views

 

Statistics

Views

Total Views
1,085
Views on SlideShare
1,084
Embed Views
1

Actions

Likes
0
Downloads
13
Comments
0

1 Embed 1

http://www.slideshare.net 1

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

Graphing Quadradic Graphing Quadradic Presentation Transcript

  • Graphing Quadratic Functions y = ax 2 + bx + c
    • All the slides in this presentation are timed.
    • You do not need to click the mouse or press any keys on the keyboard for the presentation on each slide to continue.
    • However, in order to make sure the presentation does not go too quickly, you will need to click the mouse or press a key on the keyboard to advance to the next slide.
    • You will know when the slide is finished when you see a small icon in the bottom left corner of the slide.
    Click the mouse button to advance the slide when you see this icon.
  • Quadratic Functions The graph of a quadratic function is a parabola . A parabola can open up or down. If the parabola opens up, the lowest point is called the vertex. If the parabola opens down, the vertex is the highest point. NOTE: if the parabola opened left or right it would not be a function! y x Vertex Vertex
  • Standard Form y = ax 2 + bx + c The parabola will open down when the a value is negative. The parabola will open up when the a value is positive. The standard form of a quadratic function is y x a > 0 a < 0
  • Line of Symmetry Parabolas have a symmetric property to them. If we drew a line down the middle of the parabola, we could fold the parabola in half. We call this line the line of symmetry . The line of symmetry ALWAYS passes through the vertex. Or, if we graphed one side of the parabola, we could “fold” (or REFLECT ) it over, the line of symmetry to graph the other side. y x Line of Symmetry
  • Finding the Line of Symmetry Find the line of symmetry of y = 3 x 2 – 18 x + 7 When a quadratic function is in standard form The equation of the line of symmetry is y = ax 2 + bx + c , For example… Using the formula… This is best read as … the opposite of b divided by the quantity of 2 times a . Thus, the line of symmetry is x = 3.
  • Finding the Vertex We know the line of symmetry always goes through the vertex. Thus, the line of symmetry gives us the x – coordinate of the vertex. To find the y – coordinate of the vertex, we need to plug the x – value into the original equation. STEP 1: Find the line of symmetry STEP 2: Plug the x – value into the original equation to find the y value. y = –2 x 2 + 8 x –3 y = –2(2) 2 + 8(2) –3 y = –2(4)+ 8(2) –3 y = –8+ 16 –3 y = 5 Therefore, the vertex is (2 , 5)
  • A Quadratic Function in Standard Form The standard form of a quadratic function is given by y = ax 2 + bx + c There are 3 steps to graphing a parabola in standard form. STEP 1 : Find the line of symmetry STEP 2 : Find the vertex STEP 3 : Find two other points and reflect them across the line of symmetry. Then connect the five points with a smooth curve. Plug in the line of symmetry ( x – value) to obtain the y – value of the vertex. MAKE A TABLE using x – values close to the line of symmetry. USE the equation
  • STEP 1 : Find the line of symmetry Let's Graph ONE! Try … y = 2 x 2 – 4 x – 1 A Quadratic Function in Standard Form Thus the line of symmetry is x = 1 y x
  • Let's Graph ONE! Try … y = 2 x 2 – 4 x – 1 STEP 2 : Find the vertex A Quadratic Function in Standard Form Thus the vertex is (1 ,–3). Since the x – value of the vertex is given by the line of symmetry, we need to plug in x = 1 to find the y – value of the vertex. y x
  • 5 – 1 Let's Graph ONE! Try … y = 2 x 2 – 4 x – 1 STEP 3 : Find two other points and reflect them across the line of symmetry. Then connect the five points with a smooth curve. A Quadratic Function in Standard Form y x 3 2 y x