• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Aplicaciones La Transformada De Laplace
 

Aplicaciones La Transformada De Laplace

on

  • 9,209 views

 

Statistics

Views

Total Views
9,209
Views on SlideShare
9,192
Embed Views
17

Actions

Likes
2
Downloads
171
Comments
1

1 Embed 17

http://www.slideshare.net 17

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel

11 of 1 previous next

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
  • :o
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Aplicaciones La Transformada De Laplace Aplicaciones La Transformada De Laplace Presentation Transcript

    •  ¿Qué es un sistema de control ? › En nuestra vida diaria existen numerosos objetivos que necesitan cumplirse.  En el ámbito doméstico › Controlar la temperatura y humedad de casas y edificios  En transportación › Controlar que un auto o avión se muevan de un lugar a otro en forma segura y exacta  En la industria › Controlar un sinnúmero de variables en los procesos de manufactura
    •  En años recientes, los sistemas de control han asumido un papel cada vez más importante en el desarrollo y avance de la civilización moderna y la tecnología.  Los sistemas de control se encuentran en gran cantidad en todos los sectores de la industria: › tales como control de calidad de los productos manufacturados, líneas de ensamble automático, control de máquinas-herramienta, tecnología espacial y sistemas de armas, control por computadora, sistemas de transporte, sistemas de potencia, robótica y muchos otros
    •  Satélites
    •  El campo de aplicación de los sistemas de control es muy amplia.  Y una herramienta que se utiliza en el diseño de control clásico es precisamente: La transformada de Laplace
    •  En el estudio de los procesos es necesario considerar modelos dinámicos, es decir, modelos de comportamiento variable respecto al tiempo.  Esto trae como consecuencia el uso de ecuaciones diferenciales respecto al tiempo para representar matemáticamente el comportamiento de un proceso.
    •  El comportamiento dinámico de los procesos en la naturaleza puede representarse de manera aproximada por el siguiente modelo general de comportamiento dinámico lineal:  La transformada de Laplace es una herramienta matemática muy útil para el análisis de sistemas dinámicos lineales.
    •  De hecho, la transformada de Laplace permite resolver ecuaciones diferenciales lineales mediante la transformación en ecuaciones algebraicas con lo cual se facilita su estudio.  Una vez que se ha estudiado el comportamiento de los sistemas dinámicos, se puede proceder a diseñar y analizar los sistemas de control de manera simple.
    •  MODELACIÓN MATEMÁTICA Suspensión de un automóvil Fuerza de entrada f(t) ∑ F = ma z(t) f (t ) − kz (t ) − b dz (t ) dt =m d 2 z (t ) dt 2 m Desplazamiento, salida del sistema b k
    • Suspensión de un automóvil dz (t ) d 2 z (t ) f (t ) − kz (t ) − b =m dt dt 2 Aplicando la transformada de Laplace a cada término (considerando condiciones iniciales igual a cero) F ( s ) − kZ ( s ) − bsZ ( s ) = ms 2 Z ( s ) [ F ( s ) = Z ( s ) ms 2 + bs + k ] Z ( s) 1 = Función de F ( s ) ms 2 + bs + k transferencia
    •  MODELACIÓN MATEMÁTICA Circuito eléctrico di (t ) 1 ei (t ) = L dt + Ri (t ) + ∫ C i (t )dt 1 C ∫ i (t )dt = eo (t )
    • Circuito eléctrico di (t ) 1 1 ei (t ) = L dt + Ri (t ) + ∫C i (t )dt C ∫i (t )dt = eo (t ) Aplicando la transformada de Laplace 1 1 E i ( s ) = LsI ( s ) + RI ( s ) + I (s) I ( s ) = Eo ( s ) Cs Cs Combinando las ecuaciones (despejando para I(s)) 1 E i ( s ) = Ls[ CsEo ( s )] + R[ CsEo ( s )] + [ CsEo ( s)] Cs [ E i ( s ) = Eo ( s ) LCs 2 + RCs + 1 ] Eo ( s ) 1 Función de = Ei ( s ) LCs 2 + RCs + 1 transferencia
    •  Representa el comportamiento dinámico del proceso  Nos indica como cambia la salida de un proceso ante=un cambio en la entrada Y (s) Cambio en la salida del proceso X ( s ) Cambio en la entrada del proceso Y ( s ) Respuesta del proceso = X (s) Función forzante  Diagrama de bloques Entrada del Salida del proceso proceso Proceso (respuesta al (función forzante o estímulo) estímulo)
    • Diagrama de bloques  Suspensión de un automóvil Entrada 1 Salida (Bache) ms 2 + bs + k (Desplazamiento del coche) -3 10 x 10 3 8 2 6 4 1 2 0 0 -2 -1 -4 -2 -6 -8 -3 -10 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 -4 0 0.5 1 1.5 2 2.5 3 4 x 10
    • Diagrama de bloques  Circuito eléctrico Ei(s) 1 Eo(s) (Voltaje de entrada) LCs 2 + RCs + 1 (Voltaje de salida) 20 10 18 9 16 8 14 7 12 6 10 5 8 4 6 3 4 2 2 1 0 0 0.5 1 1.5 2 2.5 3 3.5 4 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4 x 10 4 x10
    •  TEOREMA DE DIFERENCIACIÓN REAL (Es uno de los más utilizados para transformar las ecuaciones diferenciales)
    •  TEOREMA DE VALOR FINAL (Nos indica el valor en el cual se estabilizará la respuesta)  TEOREMA DE VALOR INICIAL (Nos indica las condiciones iniciales)
    • Transformada Inversa De Laplace K1 K2 20 5007.25 Ts ( s ) = Tv ( s ) + W ( s) Tv ( s ) = W (s) = τ 1s + 1 τ 2s + 1 s s K1  20  K 2  5007.25  Ts ( s ) =  +  = τ 1s + 1  s  τ 2 s + 1  s  0.381883  20  − 7.573947 x10 −4  5007.25  7.63766 3.792464 Ts ( s ) =  +  = − 1.712995s + 1  s  1.712995s + 1  s  (1.712995s + 1) s (1.712995s + 1) s Expansión en fracciones parciales 4.458658 2.213928 a1 a b1 b Ts ( s ) = − = + 2− − 2 ( s + 0.583772) s ( s + 0.583772) s ( s + 0.583772) s ( s + 0.583772) s
    • Transformada Inversa De Laplace  4.458658  4.458658 a1 = ( s + 0.583772)   ( s + 0.583772) s   = = −7.6376   s =−0.583772 − 0.583772  4.458658  4.458658 a2 = ( s )    ( s + 0.583772 ) s  = = 7.6376   s =0 0.583772  2.213928  2.213928 b1 = ( s + 0.583772)   ( s + 0.583772) s   =− = 3.792453   s =−0.583772 − 0.583772  2.213928  2.213928 b2 = ( s )   ( s + 0.583772) s   =− = −3.792453   s =0 0.583772 7.637670 7.637670 3.792453 3.792453 Ts ( s ) = − + + − ( s + 0.583772) s ( s + 0.583772) s Ts (t ) = −7.637670e −0.583772t + 7.637670 + 3.792453e −0.583772t − 3.792453 + Tss (Tss = temperatura inicial de salida) ( ) ( ) Ts (t ) = 7.637670 1 − e −0.583772t − 3.792453 1 − e −0.583772t + Tss
    • Temperatura del agua de salida – Lazo abierto (sin control) Tv(s) K1 Ts(s) (Aumento de la temperatura de vapor a τ 1s + 1 (Aumento en la temperatura de la entrada ) agua a la salida) Temperatura del agua de salida – Lazo cerrado (con control) Valor + 0.3819 Variable Controlador 1.713s + 1 controlad desead - Acción o de a control
    •  ECUACIÓN DIFERENCIAL DE UN CONTROLADOR PID  1 de(t )  m(t ) = Kc e(t ) +  τi ∫ e(t )dt + τ d dt   Aplicando la transformada de Laplace  1  M(s) = Kc E(s) + E ( s ) + τ d sE ( s )  τis  M (s)  1  = Kc E(s) + E ( s ) + τ d sE ( s ) E (s)  τis  M (s)  1  = Kc 1 + + τ d s E (s)  τis  Donde E(s) es la diferencia entre el valor deseado y el valor medido
    • El sistema de control automático Temperatura de agua a la salida – Lazo cerrado (con control) + Valor Kc1 + τ1s + τ d s  0.3819 Variable   desead -  i Acción 1.713s + 1 controlad o de a control 6 6 5 5 X0 : .683 Y: 4.91 4 4 3 3 2 2 1 1 0 0 -1 0 1 2 3 4 5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5