Your SlideShare is downloading. ×
0
Aplicaciones La Transformada De Laplace
Aplicaciones La Transformada De Laplace
Aplicaciones La Transformada De Laplace
Aplicaciones La Transformada De Laplace
Aplicaciones La Transformada De Laplace
Aplicaciones La Transformada De Laplace
Aplicaciones La Transformada De Laplace
Aplicaciones La Transformada De Laplace
Aplicaciones La Transformada De Laplace
Aplicaciones La Transformada De Laplace
Aplicaciones La Transformada De Laplace
Aplicaciones La Transformada De Laplace
Aplicaciones La Transformada De Laplace
Aplicaciones La Transformada De Laplace
Aplicaciones La Transformada De Laplace
Aplicaciones La Transformada De Laplace
Aplicaciones La Transformada De Laplace
Aplicaciones La Transformada De Laplace
Aplicaciones La Transformada De Laplace
Aplicaciones La Transformada De Laplace
Aplicaciones La Transformada De Laplace
Aplicaciones La Transformada De Laplace
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Aplicaciones La Transformada De Laplace

8,181

Published on

Published in: Business, Technology
1 Comment
3 Likes
Statistics
Notes
No Downloads
Views
Total Views
8,181
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
189
Comments
1
Likes
3
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1.  ¿Qué es un sistema de control ? › En nuestra vida diaria existen numerosos objetivos que necesitan cumplirse.  En el ámbito doméstico › Controlar la temperatura y humedad de casas y edificios  En transportación › Controlar que un auto o avión se muevan de un lugar a otro en forma segura y exacta  En la industria › Controlar un sinnúmero de variables en los procesos de manufactura
  • 2.  En años recientes, los sistemas de control han asumido un papel cada vez más importante en el desarrollo y avance de la civilización moderna y la tecnología.  Los sistemas de control se encuentran en gran cantidad en todos los sectores de la industria: › tales como control de calidad de los productos manufacturados, líneas de ensamble automático, control de máquinas-herramienta, tecnología espacial y sistemas de armas, control por computadora, sistemas de transporte, sistemas de potencia, robótica y muchos otros
  • 3.  Satélites
  • 4.  El campo de aplicación de los sistemas de control es muy amplia.  Y una herramienta que se utiliza en el diseño de control clásico es precisamente: La transformada de Laplace
  • 5.  En el estudio de los procesos es necesario considerar modelos dinámicos, es decir, modelos de comportamiento variable respecto al tiempo.  Esto trae como consecuencia el uso de ecuaciones diferenciales respecto al tiempo para representar matemáticamente el comportamiento de un proceso.
  • 6.  El comportamiento dinámico de los procesos en la naturaleza puede representarse de manera aproximada por el siguiente modelo general de comportamiento dinámico lineal:  La transformada de Laplace es una herramienta matemática muy útil para el análisis de sistemas dinámicos lineales.
  • 7.  De hecho, la transformada de Laplace permite resolver ecuaciones diferenciales lineales mediante la transformación en ecuaciones algebraicas con lo cual se facilita su estudio.  Una vez que se ha estudiado el comportamiento de los sistemas dinámicos, se puede proceder a diseñar y analizar los sistemas de control de manera simple.
  • 8.  MODELACIÓN MATEMÁTICA Suspensión de un automóvil Fuerza de entrada f(t) ∑ F = ma z(t) f (t ) − kz (t ) − b dz (t ) dt =m d 2 z (t ) dt 2 m Desplazamiento, salida del sistema b k
  • 9. Suspensión de un automóvil dz (t ) d 2 z (t ) f (t ) − kz (t ) − b =m dt dt 2 Aplicando la transformada de Laplace a cada término (considerando condiciones iniciales igual a cero) F ( s ) − kZ ( s ) − bsZ ( s ) = ms 2 Z ( s ) [ F ( s ) = Z ( s ) ms 2 + bs + k ] Z ( s) 1 = Función de F ( s ) ms 2 + bs + k transferencia
  • 10.  MODELACIÓN MATEMÁTICA Circuito eléctrico di (t ) 1 ei (t ) = L dt + Ri (t ) + ∫ C i (t )dt 1 C ∫ i (t )dt = eo (t )
  • 11. Circuito eléctrico di (t ) 1 1 ei (t ) = L dt + Ri (t ) + ∫C i (t )dt C ∫i (t )dt = eo (t ) Aplicando la transformada de Laplace 1 1 E i ( s ) = LsI ( s ) + RI ( s ) + I (s) I ( s ) = Eo ( s ) Cs Cs Combinando las ecuaciones (despejando para I(s)) 1 E i ( s ) = Ls[ CsEo ( s )] + R[ CsEo ( s )] + [ CsEo ( s)] Cs [ E i ( s ) = Eo ( s ) LCs 2 + RCs + 1 ] Eo ( s ) 1 Función de = Ei ( s ) LCs 2 + RCs + 1 transferencia
  • 12.  Representa el comportamiento dinámico del proceso  Nos indica como cambia la salida de un proceso ante=un cambio en la entrada Y (s) Cambio en la salida del proceso X ( s ) Cambio en la entrada del proceso Y ( s ) Respuesta del proceso = X (s) Función forzante  Diagrama de bloques Entrada del Salida del proceso proceso Proceso (respuesta al (función forzante o estímulo) estímulo)
  • 13. Diagrama de bloques  Suspensión de un automóvil Entrada 1 Salida (Bache) ms 2 + bs + k (Desplazamiento del coche) -3 10 x 10 3 8 2 6 4 1 2 0 0 -2 -1 -4 -2 -6 -8 -3 -10 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 -4 0 0.5 1 1.5 2 2.5 3 4 x 10
  • 14. Diagrama de bloques  Circuito eléctrico Ei(s) 1 Eo(s) (Voltaje de entrada) LCs 2 + RCs + 1 (Voltaje de salida) 20 10 18 9 16 8 14 7 12 6 10 5 8 4 6 3 4 2 2 1 0 0 0.5 1 1.5 2 2.5 3 3.5 4 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4 x 10 4 x10
  • 15.  TEOREMA DE DIFERENCIACIÓN REAL (Es uno de los más utilizados para transformar las ecuaciones diferenciales)
  • 16.  TEOREMA DE VALOR FINAL (Nos indica el valor en el cual se estabilizará la respuesta)  TEOREMA DE VALOR INICIAL (Nos indica las condiciones iniciales)
  • 17. Transformada Inversa De Laplace K1 K2 20 5007.25 Ts ( s ) = Tv ( s ) + W ( s) Tv ( s ) = W (s) = τ 1s + 1 τ 2s + 1 s s K1  20  K 2  5007.25  Ts ( s ) =  +  = τ 1s + 1  s  τ 2 s + 1  s  0.381883  20  − 7.573947 x10 −4  5007.25  7.63766 3.792464 Ts ( s ) =  +  = − 1.712995s + 1  s  1.712995s + 1  s  (1.712995s + 1) s (1.712995s + 1) s Expansión en fracciones parciales 4.458658 2.213928 a1 a b1 b Ts ( s ) = − = + 2− − 2 ( s + 0.583772) s ( s + 0.583772) s ( s + 0.583772) s ( s + 0.583772) s
  • 18. Transformada Inversa De Laplace  4.458658  4.458658 a1 = ( s + 0.583772)   ( s + 0.583772) s   = = −7.6376   s =−0.583772 − 0.583772  4.458658  4.458658 a2 = ( s )    ( s + 0.583772 ) s  = = 7.6376   s =0 0.583772  2.213928  2.213928 b1 = ( s + 0.583772)   ( s + 0.583772) s   =− = 3.792453   s =−0.583772 − 0.583772  2.213928  2.213928 b2 = ( s )   ( s + 0.583772) s   =− = −3.792453   s =0 0.583772 7.637670 7.637670 3.792453 3.792453 Ts ( s ) = − + + − ( s + 0.583772) s ( s + 0.583772) s Ts (t ) = −7.637670e −0.583772t + 7.637670 + 3.792453e −0.583772t − 3.792453 + Tss (Tss = temperatura inicial de salida) ( ) ( ) Ts (t ) = 7.637670 1 − e −0.583772t − 3.792453 1 − e −0.583772t + Tss
  • 19. Temperatura del agua de salida – Lazo abierto (sin control) Tv(s) K1 Ts(s) (Aumento de la temperatura de vapor a τ 1s + 1 (Aumento en la temperatura de la entrada ) agua a la salida) Temperatura del agua de salida – Lazo cerrado (con control) Valor + 0.3819 Variable Controlador 1.713s + 1 controlad desead - Acción o de a control
  • 20.  ECUACIÓN DIFERENCIAL DE UN CONTROLADOR PID  1 de(t )  m(t ) = Kc e(t ) +  τi ∫ e(t )dt + τ d dt   Aplicando la transformada de Laplace  1  M(s) = Kc E(s) + E ( s ) + τ d sE ( s )  τis  M (s)  1  = Kc E(s) + E ( s ) + τ d sE ( s ) E (s)  τis  M (s)  1  = Kc 1 + + τ d s E (s)  τis  Donde E(s) es la diferencia entre el valor deseado y el valor medido
  • 21. El sistema de control automático Temperatura de agua a la salida – Lazo cerrado (con control) + Valor Kc1 + τ1s + τ d s  0.3819 Variable   desead -  i Acción 1.713s + 1 controlad o de a control 6 6 5 5 X0 : .683 Y: 4.91 4 4 3 3 2 2 1 1 0 0 -1 0 1 2 3 4 5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

×